精英家教网 > 初中数学 > 题目详情
17.在等腰△ABC中,如果过顶角的顶点A的一条直线AD将△ABC分别割成两个等腰三角形,那么∠BAC=90°或108°.

分析 根据题意画出图形,分类讨论,利用三角形的内角和定理和等腰三角形的性质可得结论.

解答 解:①当BD=CD,CD=AD时,如图①所示,
∵AB=AC,
∴∠B=∠C,
设∠B=∠C=x,
∵BD=CD,CD=AD,
∴∠BAD=∠B=x,∠CAD=∠C=x,
∴4x=180°,
∴x=45°,
∴∠BAC=2x=45°×2=90°;
②当AD=BD,AC=CD时,如图②所示,
AB=AC,
∴∠B=∠C
设∠B=∠C=x,
∵AD=BD,AC=CD,
∴∠BAD=∠B=x,∠CAD=$\frac{180°-x}{2}$,
∴$\frac{180°-x}{2}+x$=180°-2x,
解得:x=36°,
∴∠BAC=180°-2x=180°-2×36°=108°,
故答案为:90°或108°.

点评 本题主要考查了等腰三角形的性质,根据题意画出图形分类讨论,利用三角形的内角和定理是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.问题背景:(1)如图1,在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,作DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,写出MD和ME之间的数量关系是相等.

数学思考:(2)如图2,在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请写出证明过程.
拓展探究:(3)如图3,在任意△ABC中,分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,M是BC的中点,连接MD和ME,试判断△MED的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知,在△ABC中,∠ACB=90°,CA=CD,CG⊥AD于点H,交AB于点G,E为AB上一点,连接CE交AD于点F.
(1)如图1,若CE⊥AB于点E,HG=1,CH=5,求CF的长;
(2)如图2,若AC=AE,∠GEH=∠ECH,求证:CE=$2\sqrt{2}$HE;
(3)如图3,若E为AB的中点,作A关于CE的对称点A′,连接CA′,EA′,DA′,请直接写出∠CEH,∠A′CD,∠EA′D之间的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.平行四边形的两条对角线长和一条边的长可以依次是(  )
A.4、4、4B.6、4、4C.6、4、6D.3、4、5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.菱形ABCD的一条对角线的长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为(  )
A.16B.12C.12或16D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G,给出以下五个结论:
①∠B=∠C=45°;
②AE=CF,
③AP=EF,
④△EPF是等腰直角三角形,
⑤四边形AEPF的面积是△ABC面积的一半.
其中正确的结论是(  )
A.只有①B.①②④C.①②③④D.①②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,tan∠GAB=$\frac{3}{4}$,AB=10cm,点P从点B出发以5cm/s的速度沿BA向终点A运动,同时点Q以相同的速度从点A出发沿射线AG运动,分别以PB、PQ为边作等边△BPD,正方形PQEF,连接PE,设运动的时间为ts.
(1)当PE⊥AG时,求t的值;
(2)当△APQ是等腰三角形时,求t的值;
(3)当点F落在△BPD的边上时,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.问题探索:
(1)如图1,已知四边形ABCD中,AB=a,BC=b,∠B=∠D=90°,求:
①对角线BD长度的最大值;②四边形ABCD的最大面积;(用含有a,b的代数式表示)
(2)如图2,四边形ABCD是某市规划用地示意图,经测量得到如下数据:AB=20cm,BC=30cm,∠B=120°,∠A+∠C=195°,请你用所学到的知识探索出它的最大面积,并说明理由.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若直线y=kx经过点(2,6),则它的解析式是y=3x.

查看答案和解析>>

同步练习册答案