精英家教网 > 初中数学 > 题目详情
如图,顶点为A的抛物线y=a(x+2)2-4交x轴于点B(1,0),连接AB,过原点O作射线OMAB,过点A作ADx轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.
(1)求抛物线的解析式(关系式);
(2)求点A,B所在的直线的解析式(关系式);
(3)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,四边形ABOP分别为平行四边形?等腰梯形?
(4)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.
(1)把(1,0)代入y=a(x+2)2-4,
得a=
4
9

∴y=
4
9
(x+2)2-4,
即y=
4
9
x2+
16
9
x-
20
9


(2)设直线AB的解析式是y=kx+b.
∵点A(-2,-4),点B(1,0),
-2k+b=-4
k+b=0
 
解得
k=
4
3
b=-
4
3

∴y=
4
3
x-
4
3


(3)由题意得OP=t,AB=
(-2-1)2+(-4-0)2
=5

若四边形ABOP为平行四边形,则OP=AB=5,即当t=5时,四边形ABOP为平行四边形.
若四边形ABOP为等腰梯形,连接AP,过点P作PG⊥AB,过点O作OH⊥AB,垂足分别为G、H.
∴△APG≌△BOH.
在Rt△OBM中,
∵OM=
4
3
,OB=1,
∴BM=
5
3

∴OH=
4
5

∴BH=
3
5

∴OP=GH=AB-2BH=
19
5

即当t=
19
5
时,四边形ABOP为等腰梯形.

(4)将y=0代入y=
4
9
x2+
16
9
x-
20
9
,得
4
9
x2+
16
9
x-
20
9
=0,
解得x=1或-5.
∴C(-5,0).
∴OC=5.
∵OMAB,ADx轴,
∴四边形ABOD是平行四边形.
∴AD=OB=1.
∴点D的坐标是(-3,-4).
∴S△DOC=
1
2
×5×4=10.
过点P作PN⊥BC,垂足为N.易证△OPN△BOH.
PN
OH
=
OP
OB

PN
4
5
=
t
1

∴PN=
4
5
t.
∴四边形CDPQ的面积S=S△DOC-S△OPQ=10-
1
2
×(5-2t)×
4
5
t=
4
5
t2-2t+10.
∴当t=
5
4
时,四边形CDPQ的面积S最小.
此时,点P的坐标是(-
3
4
,-1),点Q的坐标是(-
5
2
,0),
∴PQ=
(-
5
2
+
3
4
)
2
+(0+1)2
=
65
4

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.
(1)在如图所示的直角坐标系中,求出该抛物线的解析式;
(2)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,∠AOB=45°,过OA上到点O的距离分别为1,2,3,4,5 …的点作OA的垂线与OB相交,再按一定规律标出一组如图所示的黑色梯形.设前n个黑色梯形的面积和为Sn
n123
Sn
(1)请完成上面的表格;
(2)已知Sn与n之间满足一个二次函数关系,试求出这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0).
(1)求点C的坐标;
(2)求过A、B、C三点的抛物线的解析式和对称轴;
(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于点A(3,0),B(8,0),与y轴交于点C,且AC平分∠OCB,直线l是它的对称轴.
(1)求直线l和抛物线的解析式;
(2)直线BC与l相交于点D,沿直线l平移直线BC,与直线l,y轴分别交于点E,F,探究四边形CDEF为菱形时点E的坐标;
(3)线段CB上有一动点P,从C点开始以每秒一个单位的速度向B点运动,PM⊥BC,交线段CA于点M,记点P运动时间为t,△CPO与△CPM的面积之差为y,求y与t(0<t≤6)之间的关系式,并确定在运动过程中y的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴相交于点C.连接AC,BC,A(-3,0),C(0,
3
),且当x=-4和x=2时二次函数的函数值y相等.
(1)求抛物线的解析式;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.
①当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
②抛物线的对称轴上是否存在点Q,使得以B、N、Q为顶点的三角形与△A0C相似?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.
③当运动时间为t秒时,连接MN,将△BMN沿MN翻折,得到△PMN.并记△PMN与△AOC的重叠部分的面积为S.求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0),与y轴的正半轴交于点C.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;
(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;
(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在城市繁华中心地带的商铺内,放置统一尺寸大小的“格子柜”,任何人只需每月支付一定的费用,就可以租用一个柜子寄卖自己的物品,相当于拥有自己的一个“迷你实体店”,“格子店”以投入少、易操作为特点,吸引着众多淘宝店家.
张阿姨有格子柜40个,当每个格子柜的月租金为270元时,恰好全部租出.在此基础上,当每个格子柜的月租金提高10元时,格子柜就少租出一个,且没有租出的一个格子柜每月需支出费用20元,设每个格子柜的月租金为x(x≥270)元,月收益为y元(总收益=格子柜租金收入-未租出格子柜支出费用)
(1)求y关于x的函数关系;
(2)当月租金分别为300元和350元时,张阿姨的月收益分别是多少元?可以出租多少个格子柜?请你简单说明理由;
(3)若张阿姨某月出租格子柜的总收益为11100元,则她这个月出租了多少个格子柜?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

现有一个长为2米的长方形铁片,要把它制成一个开口的水槽.
(1)方案甲,如果做成一个底边长为1米,两边高都为0.5米开口长方形水槽,求水槽的横截面面积.
(2)方案乙,如图把铁片制成等腰梯形水槽,使∠ABC=∠BCD=120°.设BC=2xcm,梯形ABCD(水槽的横截面)的面积为ycm2,试写出y关于x的函数关系式以及自变量x的取值范围,并求出y的最大值;
(3)你能找到一种使水槽的横截面面积比方案乙中的y更大的设计方案吗?若能,请画出图形,标出必要的数据(可不写解答过程),写出你所设计方案的横截面面积;若不能,请说明理由.

查看答案和解析>>

同步练习册答案