精英家教网 > 初中数学 > 题目详情

(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C
作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在
图3中补全图形,注明字母,直接写出结论,不需证明)

解:(1)D1M=D2N。证明如下:
∵∠ACD1=90°,∴∠ACH+∠D1CK=180°﹣90°=90°。
∵∠AHK=∠ACD1=90°,∴∠ACH+∠HAC=90°。
∴∠D1CK=∠HAC。
在△ACH和△CD1M中,∠D1CK=∠HAC,∠AHC="∠C" M D1=90°,AC="C" D1
∴△ACH≌△CD1M(AAS)。∴D1M=CH。
同理可证D2N=CH。
∴D1M=D2N。
(2)①D1M=D2N成立。证明如下:
过点C作CG⊥AB,垂足为点G,

∵∠H1AC+∠ACH1+∠AH1C=180°,
∠D1CM+∠ACH1+∠ACD1=180°,∠AH1C=∠ACD1
∴∠H1AC=∠D1CM。
在△ACG和△CD1M中,∠H1AC=∠D1CM,∠AGC="∠C" M D1=90°,AC="C" D1
∴△ACG≌△CD1M(AAS)。∴CG=D1M。
同理可证CG=D2N。
∴D1M=D2N。
②作图如下:

D1M=D2N还成立。

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是
AD
,∠CAC′=
90
°.

问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.

拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•烟台)(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是
AD或A′D
AD或A′D
,∠CAC′=
90
90
°.

问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-相似的判定解答题(带解析) 题型:解答题

情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是 _________ ,∠CAC′= _________ °.

问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.

拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案