精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系x O y中,二次函数的图像与x轴、y轴的公共点分别为A(5,0)、B,点C在这个二次函数的图像上,且横坐标为3.

(1)求这个二次函数的解析式;
(2)求∠BAC的正切值;
(3)如果点D在这个二次函数的图像上,且∠DAC = 45°,求点D的坐标.
(1)(2)(3)

试题分析:解:(1)∵ 二次函数的图像经过点A(5,0),
∴ 
解得 
∴ 二次函数的解析式是
(2)当 x = 0时,得 y = 5.∴ B(0,5).
当 x = 3时,得 ,∴ C(3,6).
联结BC
∵ 


∴ 
∴ 
∴ 
(3)设Dmn).
过点DDEx轴,垂足为点E.则 DE = n
∵ A(5,0),B(0,5),∴ OA = OB
又∵ ,∴ 
即得 ∠DAE +∠BAD = 45º.
又∵ ∠DAC = 45º,即 ∠BAD +∠BAC = 45º,
∴ ∠DAE =∠BAC
又∵ ∠DEA =∠ACB = 90º,
∴ △DAE∽△BAC
∴ 
∴ .即得 
∵ 点D在二次函数的图像上,
∴ 
解得 m2 = 5(不合题意,舍去).
∴ 
∴ 
点评:该题是常考题,将二次函数的图像和二次函数值联系在一起,考查学生对二次函数的系数和三角函数值的求解方法,要求学生必须掌握。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且.点E为线段BC上的动点(点E不与点B,C重合),以E为顶点作,射线ET交线段OB于点F.

(1) 求出此抛物线函数表达式,并直接写出直线BC的解析式;
(2)求证:
(3)当为等腰三角形时,求此时点E的坐标;
(4)点P为抛物线的对称轴与直线BC的交点,点M在x轴上,点N在抛物线上,是否存在以点A、M、N、P为顶点的平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线与抛物线交于AB两点,点Ax轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点AB重合),过点Px轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作如图所示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点FG恰好落在y轴上时,求出对应的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.

(1) 直接写出点M及抛物线顶点P的坐标;
(2) 求出这条抛物线的函数解析式;
(3) 若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.

(1)求抛物线的函数关系式;
(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.
①当x取何值时,线段PQ长度取得最大值?其最大值是多少?
②是否存在点P,使△OAQ为直角三角形?若存在,求点P坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:

(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润为1200元?
(3)若该超市每星期销售这种文具盒的销售量不少于115个,且单件利润不低于4元(x为整数),当每个文具盒定价多少元时,超市每星期利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果抛物线的开口方向向下,那么a的取值范围是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数与一次函数的图象交于,则能使成立的的取值范围是
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数的图象如图所示对称轴为x=-1/2。

下列结论中:①.abc>0 ②.a+b="0" ③.2b+c>0 ④.4a十c<2b正确的有      (只要求填写正确命题的序号)

查看答案和解析>>

同步练习册答案