【题目】如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.
(1)AC=__cm,BC=__cm;
(2)当t为何值时,AP=PQ;
(3)当t为何值时,PQ=1cm.
【答案】 4 8
【解析】试题分析:(1)由于AB=12cm,点C是线段AB上的一点,BC=2AC,则AC+BC=3AC=AB=12cm,依此即可求解;
(2)分别表示出AP、PQ,然后根据等量关系AP=PQ列出方程求解即可;
(3)分相遇前、相遇后以及到达B点返回后相距1cm四种情况列出方程求解即可.
试题解析:(1)∵AB=12cm,点C是线段AB上的一点,BC=2AC,
∴AC+BC=3AC=AB=12cm,
∴AC=4cm,BC=8cm;
(2)由题意可知:AP=3t,PQ=4﹣(3t﹣t),
则3t=4﹣(3t﹣t),
解得:t=.
答:当t=时,AP=PQ.
(3)∵点P、Q相距的路程为1cm,
∴(4+t)﹣3t=1(相遇前)或3t﹣(4+t)=1(第一次相遇后),
解得t=或t=,
当到达B点时,第一次相遇后点P、Q相距的路程为1cm,
3t+4+t=12+12﹣1
解得:t=.
答:当t为, , 时,PQ=1cm.
科目:初中数学 来源: 题型:
【题目】如图,抛物线过A(1,0)、B(-1,-1)、C(3,m)三点。
(1)求抛物线的解析式及m的值;
(2)判断与AC的位置关系,并证明你的结论;
(3)在抛物线上是否存在点P,当PHx轴于点H时,以P、H、A为顶点的三角形与 相似?若存在,求出点P坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区准备在每两幢楼房之间开辟绿地,其中有一块是面积为60m2的长方形绿地,并且长比宽多7m,求长方形的宽.若设长方形绿地的宽为xm,则可列方程为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,DE∥BC.
(1)试问△ADE是否是等腰三角形,说明理由;
(2)若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8.求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MAN=120°,AC平分∠MAN.B,D分别在射线AN,AM上.
(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.
(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣(x﹣1)2+3,当t<x<4时,y随x的增大而减小,则实数t的取值范围是( )
A.t<0B.0≤t<1C.1≤t<4D.t≥4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com