£¨1£©¼ÆË㣺
12
-£¨
3
-1£©0+£¨-
1
2
£©-2-4cos30¡ã£»
£¨2£©»¯¼òÇóÖµ£º
x
x-2
¡Â£¨2+x-
4
2-x
£©£¬ÆäÖÐx=
2
£»
£¨3£©ÒÑÖªA={3£¬4}£¬B={3£¬6£¬9}£¬C={3£¬12}£®ÆäÖÐËüÃÇ·Ö±ð±íʾ°üº¬ÕâЩÏ߶γ¤¶ÈµÄ¼¯ºÏ£¬Èç¹û´Ó¼¯ºÏAÖÐËæ»úÑ¡È¡Ò»¸ö³¤¶È£¬´Ó¼¯ºÏBÖÐËæ»úÑ¡È¡Ò»¸ö³¤¶È£¬´Ó¼¯ºÏCÖÐËæ»úÑ¡È¡Ò»¸ö³¤¶È£¬ÇëÁбí»ò»­Ê÷״ͼ»Ø´ðÏÂÁÐÎÊÌ⣺
¢ÙÒÔÑ¡È¡µÄÈý¸ö³¤¶ÈµÄÏ߶ÎΪ±ß£¬Äܹ¹³ÉÈý½ÇÐεĸÅÂÊÊǶàÉÙ£¿
¢ÚÒÔÑ¡È¡µÄÈý¸ö³¤¶ÈµÄÏ߶ÎΪ±ß£¬Äܹ¹³ÉµÈÑüÈý½ÇÐεĸÅÂÊÊǶàÉÙ£¿
¢ÛÒÔÑ¡È¡µÄÈý¸ö³¤¶ÈµÄÏ߶ÎΪ±ß£¬Äܹ¹³ÉµÈ±ßÈý½ÇÐεĸÅÂÊÊǶàÉÙ£¿
·ÖÎö£º£¨1£©¸ù¾Ý¶þ´Î¸ùʽµÄÐÔÖÊ£¬ÈκηÇÁãÊýµÄÁã´ÎÃݵÈÓÚ1£¬¸ºÕûÊýÖ¸Êý´ÎÃݵÈÓÚÕýÕûÊýÖ¸Êý´ÎÃݵĵ¹Êý£¬30¡ã½ÇµÄÓàÏÒµÈÓÚ
3
2
½øÐмÆËã¼´¿ÉµÃ½â£»
£¨2£©ÏÈ°ÑÀ¨ºÅÄڵķÖʽͨ·Ö²¢½øÐмӷ¨ÔËË㣬ÔÙ¸ù¾Ý³ýÒÔÒ»¸öÊýµÈÓÚ³ËÒÔÕâÊýµÄµ¹Êý°Ñ³ý·¨×ª»¯Îª³Ë·¨£¬Ô¼·Öºó°ÑxµÄÖµ´úÈë½øÐмÆËã¼´¿ÉµÃ½â£»
£¨3£©»­³öÊ÷״ͼ£¬¢Ù¸ù¾ÝÈý½ÇÐεÄÈÎÒâÁ½±ßÖ®ºÍ´óÓÚµÚÈý±ßÈ·¶¨³öÄܹ»³ÉΪÈý½ÇÐεÄÇé¿öÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£»
¢ÚÕÒ³ö¹¹³ÉµÈÑüÈý½ÇÐεÄÇé¿öÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£»
¢ÛÕÒ³ö¹¹³ÉµÈ±ßÈý½ÇÐεÄÇé¿öÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£®
½â´ð£º½â£º£¨1£©
12
-£¨
3
-1£©0+£¨-
1
2
£©-2-4cos30¡ã
=2
3
-1+4-4¡Á
3
2

=2
3
+3-2
3

=3£»

£¨2£©
x
x-2
¡Â£¨2+x-
4
2-x
£©
=
x
x-2
¡Â
4-x2-4
2-x

=
x
x-2
x-2
x2

=
1
x
£¬
µ±x=
2
ʱ£¬Ô­Ê½=
1
x
=
1
2
=
2
2
£»

£¨3£©¸ù¾ÝÌâÒâ»­³öÊ÷״ͼÈçÏ£º

Ò»¹²ÓÐ12ÖÖÇé¿ö£¬
¸ù¾ÝÈý½ÇÐεÄÈý±ß¹Øϵ£¬Äܹ¹³ÉÈý½ÇÐεÄÓУ¨3£¬3£¬3£©£¬£¨4£¬3£¬3£©£¬£¨4£¬6£¬3£©£¬£¨4£¬9£¬12£©¹²4ÖÖÇé¿ö£¬
ËùÒÔ£¬¢ÙP£¨¹¹³ÉÈý½ÇÐΣ©=
4
12
=
1
3
£»
¢ÚP£¨¹¹³ÉµÈÑüÈý½ÇÐΣ©=
2
12
=
1
6
£»
¢ÛP£¨¹¹³ÉµÈ±ßÈý½ÇÐΣ©=
1
12
£®
µãÆÀ£º±¾Ì⿼²éÁËÁÐ±í·¨ÓëÊ÷״ͼ·¨£¬Óõ½µÄ֪ʶµãΪ£º¸ÅÂÊ=ËùÇóÇé¿öÊýÓë×ÜÇé¿öÊýÖ®±È£¬£¨3£©Òª×¢ÒâµÈ±ßÈý½ÇÐÎÒ²ÊǵÈÑüÈý½ÇÐΣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©¼ÆË㣺(
1
2
)-1+
8
+|1-
2
|0-2sin60¡ã•tan60¡ã
£®
£¨2£©½â·½³Ì£º
2(x+1)2
x2
+
x+1
x
-6=0
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆË㣺(
12
)
-1
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆË㣺
¢Ù
12
¡Á
3
-
1
8
¢Ú(-
1
2
)-2+(¦Ð-1)0-
3
3
tan600
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆË㣺|-
1
2
|+
4
-cos60¡ã+(¦Ð-5)0
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬°ÑÒ»¸öÃæ»ýΪ1µÄÕý·½ÐεȷֳÉÁ½¸öÃæ»ýΪ
1
2
µÄ³¤·½ÐΣ¬½Ó×ÅÔÙ°ÑÃæ»ýΪ
1
2
µÄ³¤·½ÐηֳÉÁ½¸öÃæ»ýΪ
1
4
µÄ³¤·½ÐΣ¬ÔÙ°ÑÃæ»ýΪ
1
4
µÄ³¤·½ÐηֳÉÁ½¸öÃæ»ýΪ
1
8
µÄ³¤·½ÐΣ¬Èç´Ë½øÐÐÏÂÈ¥£®
£¨1£©µÚ7´ÎµÈ·ÖËùµÃµÄÒ»¸ö³¤·½ÐÎÃæ»ýÊǶàÉÙ£¿
£¨2£©ÊÔÀûÓÃͼÐνÒʾµÄ¹æÂɼÆË㣺
1
2
+
1
4
+
1
8
+
1
16
+
1
32
+
1
64
+¡­+
1
128
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸