精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,EFBC上两点,且BE=CFAF=DE

求证:(1△ABF≌△DCE

  1. 四边形ABCD是矩形.

答案1∵BE=CFBF=BE+EFCE=CF+EF∴BF=CE

四边形ABCD是平行四边形,∴AB=DC

△ABF△DCE中,∵AB=DCBF=CEAF=DE

∴△ABF≌△DCE

2∵△ABF≌△DCE∴∠B=∠C

四边形ABCD是平行四边形,∴AB∥CD

∴∠B+∠C=180°

∴∠B=∠C=90°

四边形ABCD是矩形. 

解析1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC利用SSS△ABF≌△DCE

2)平行四边形的性质得到两边平行,从而∠B+∠C=180°利用全等得∠B=∠C从而得到一个直角,问题得证.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是(
A.∠ECD=112.5°
B.DE平分∠FDC
C.∠DEC=30°
D.AB= CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】①下午 2 点 10 分时,钟表的时针和分针所成锐角是________

②如图,射线 OC,OD 在∠AOB 的内部,射线 OM,ON 分别平分∠AOD,∠BOC, 且∠BON=50°,∠AOM=40°,∠COD=30°,则∠AOB 的度数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)5﹣(﹣3)+(﹣2)﹣1;

(2)2×(﹣)÷(﹣3);

(3)﹣5×[1﹣(0.5+ )÷];

(4)20×(﹣)+4×(﹣)+2×(﹣);

(5)﹣14-()÷(﹣)×[﹣2﹣(﹣3)2]﹣(﹣0.52).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在直线AB上的一点O,以O为端点依次作射线OE,OC,OD,使∠EOD=90°,∠COB=60°

(1)如图1∠EOD的一边OD在射线OB上时,求∠COE的度数

(2)如图2∠EOD绕着点O逆时针旋转到OC平分∠BOE时,求∠COD的度数;

(3)当∠EOD绕着点O逆时针旋转,且O°<∠AOE<90°(但≠60°)时,试猜想∠AOE∠COD有怎样的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线交于点C.

(1)求点D的坐标;

(2)求直线的解析表达式;

(3)求ADC的面积;

(4)在直线上存在异于点C的另一点P,使得ADP的面积是ADC面积的2倍,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列多面体,并把下表补充完整.

名称

三棱柱

四棱柱

五棱柱

六棱柱

图形

顶点数

6

10

12

棱数

9

12

面数

5

8

观察上表中的结果,你能发现之间有什么关系吗?请写出关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上,点 A 的初始位置表示的数为 1,现点 A 做如下移动:第 1 次点 A 向左移动 3 个单位长度至点 A1,第 2 次从点 A1 向右移动 6 个单位长度至点 A2,第 3 次从点 A2 向左移动 9 个单位长度至点 A3,…,按照这种移动方式进行下去,点 A4 表示的数,是__________ ,如果点 An 与原点的距离不小于 20, 那么 n 的最小值是________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.
(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?
(2)若原点O在图中数轴上点C的右边,且CO=28,求p.

查看答案和解析>>

同步练习册答案