精英家教网 > 初中数学 > 题目详情

【题目】为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=(a为常数),如图所示. 根据图中提供的信息,解答下列问题:

(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;

(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?

【答案】(1)yt0≤t≤(2)6小时

【解析】

(1) 将点代入函数关系式, 解得,

代入, , 所以所求反比例函数关系式为;

再将代入, ,所以所求正比例函数关系式为.

(2) 解不等式, 解得,

所以至少需要经过6小时后,学生才能进入教室.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,边长为1的正方形网格中,△ABC的三个顶点ABC都在格点上.

(1)作关于△ABC关于x轴的对称图形△DEF,(其中ABC的对称点分别是DEF),并写出点D坐标;

(2)Px轴上一点,请在图中画出使△PAB的周长最小时的点P,并直接写出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC=5,cos∠ABC=0.6,将△ABC绕点C顺时针旋转,得到△A1B1C.

(1)如图1,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;
(2)如图2,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1 , 求线段EF1长度的最大值与最小值的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图①在ABC中,点DBC边上的一点,将ABD沿AD折叠,得到AEDAEBC交于点F.已知∠B50°,∠BAD15°,求∠AFC的度数.

2)如图②,将ABC纸片沿DE折叠,使点A落在四边形BCED的内部点A′的位置,∠1、∠2与∠A之间存在一定的数量关系,请判断它们之间的关系,并说明理由.

3)如图③,将ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,此时∠1、∠2与∠A之间也存在一定的数量关系,请直接写出它们之间的关系,无需说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市公交公司为应对春运期间的人流高峰,计划购买AB两种型号的公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车3辆,共需650万元,

(1)试问该公交公司计划购买A型和B型公交车每辆各需多少万元?

(2)若该公司预计在某条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用W不超过1200万元,且确保这10辆公交车在某条线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用W最少?最少总费用是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为(
A.13
B.14
C.15
D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用两个边长为15的小正方形拼成一个大的正方形,

1)求大正方形的边长?

2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为43,且面积为720cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=CBABC=90°FAB延长线上一点,点EBC上,且AE=CF

1)求证:ABE≌△CBF

2)若CAE=30°,求ACF的度数.

查看答案和解析>>

同步练习册答案