精英家教网 > 初中数学 > 题目详情
如图,已知△ABC的三个顶点坐标分别为A(-4,0),B(1,0),C(-2,6).

(1)求经过点A,B,C三点的抛物线解析式.
(2)设直线BC交y轴于点E,连结AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连结AD交BC于点F,求证:以A,B,F为顶点的三角形与△ABC相似,并求:
(1);(2)证明见试题解析;(3)证明见试题解析,

试题分析:(1)利用待定系数发求解即可得出抛物线的解析式;
(2)求出直线BC的函数解析式,从而得出点E的坐标,然后分别求出AE及CE的长度即可证明出结论;
(3)求出AD的函数解析式,然后结合直线BC的解析式可得出点F的坐标,由题意得∠ABF=∠CBA,然后判断出是否等于即可作出判断.
试题解析:(1)设函数解析式为:,由函数经过点A(﹣4,0)、B(1,0)、C(﹣2,6),
可得,解得:,故经过A、B、C三点的抛物线解析式为:
(2)设直线BC的函数解析式为y=kx+b,由题意得:,解得:,即直线BC的解析式为.故可得点E的坐标为(0,2),从而可得:AE=,CE=,故可得出AE=CE;
(3)相似.理由如下:设直线AD的解析式为y=kx+b,则,解得:,即直线AD的解析式为.联立直线AD与直线BC的函数解析式可得:,解得:,即点F的坐标为(),则BF=,又∵AB=5,BC=,∴,∴,又∵∠ABF=∠CBA,∴△ABF∽△CBA.故以A、B、F为顶点的三角形与△ABC相似,=
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=3x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为(     )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0).

(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.
当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为          .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种      棵橘子树,橘子总个数最多.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数(a≠0)的图像如图所示,若(k≠0)有两个不相等的实数根,则k的取值范围是(        ) 
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若根式有意义,则双曲线与抛物线的交点在第  象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线>0)的对称轴为直线,且经过点(-3,),(4,),试比较的大小:    (填“>”,“<”或“=”).

查看答案和解析>>

同步练习册答案