精英家教网 > 初中数学 > 题目详情
19.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C出发,以2cm/s的速度沿折线C-A-B向点B运动,同时,点E从点B出发,以1cm/s的速度沿BC边向点C运动,设点E运动的时间为t(s)(0<t<8).
(1)求AB的长;
(2)当△BDE是直角三角形时,求t的值;
(3)设△CDE的面积为y(cm2),求y与t的函数关系式.

分析 (1)直接利用勾股定理计算;
(2)当△BDE是直角三角形时,∠B不可能为直角,所以分两种情况讨论:i)图1,当∠BED=90°时;ii)图2,当∠EDB=90°时;利用相似求边,再利用同角三角函数值列等式计算求出t的值;
(3)分两种情况用三角形的面积公式求解即可.

解答 解:(1)由勾股定理得:AB=$\sqrt{{6}^{2}+{8}^{2}}$=10,
(2)如图1,当∠BED=90°时,△BDE是直角三角形,
则BE=t,AC+AD=2t
∴BD=6+10-2t=16-2t,
∵∠BED=∠C=90°,
∴DE∥AC,
∴$\frac{BE}{BC}=\frac{DE}{AC}$,
∴$\frac{t}{8}=\frac{DE}{6}$,
∴DE=$\frac{3}{4}$t,
∵sinB=$\frac{DE}{BD}=\frac{3}{5}$,
∴$\frac{\frac{3t}{4}}{16-2t}=\frac{3}{5}$,
t=$\frac{64}{13}$;
如图2,当∠EDB=90°时,△BDE是直角三角形,
则BE=t,BD=16-2t,
cosB=$\frac{BD}{BE}=\frac{BC}{AB}=\frac{8}{10}$,
∴$\frac{16-2t}{t}=\frac{8}{10}$,
∴t=$\frac{40}{7}$;
∴当△BDE是直角三角形时,t的值为$\frac{64}{13}$或$\frac{40}{7}$
(3)当0<t≤3时,y=$\frac{1}{2}$×2t×(8-t)=8t-t2
当3<t<8时,y=$\frac{1}{2}$(8-t)×$\frac{3}{5}$(16-2t)=$\frac{3}{5}$t2-$\frac{48}{5}$t+$\frac{192}{5}$.

点评 本题是三角形的综合问题,以两个动点为背景,主要考查了平行四边形、菱形、直角三角形的性质,考查了利用平行线分线段成比例定理求边长或表示边长;难度适中,是一个不错的综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.计算:
(1)(-3)2+$\sqrt{12}$×(-$\sqrt{3}$)+($\sqrt{2}$)0      
(2)(2$\sqrt{3}$+3$\sqrt{2}$)2-(2$\sqrt{3}$-3$\sqrt{2}$)2
(3)$\sqrt{72}$-($\sqrt{18}$-$\frac{2}{\sqrt{2}}$)                
(4)$\frac{\sqrt{20}-4}{\sqrt{5}}$-$\sqrt{\frac{1}{5}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,在△ABC中BD⊥AC于点D,在线段DA上取点E使得ED=CD,DF平分∠ADB交AB于点F,连接EF.
(1)若AB=4$\sqrt{5}$,BC=$\sqrt{17}$,AD=8,求CD的长;
(2)若BD+ED=$\sqrt{2}$DF,求证:FB=FE且FB⊥FE;
(3)如图2,在(2)的情况下,若∠ABC=90°,求$\frac{AB}{BC}$的值

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解下列方程:
(1)2x2+3x-1=0
(2)3(x-1)2=x(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知,如图1,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α°,后得到正方形AB′C′D′(0°<α<90°),C′D′与直线CD相交于点E,C′B′与直线CD相交于点F.
(1)试猜想∠EAF=45°°;△EC′F的周长为2.
(2)如图2,连接B′D′分别交AE、AF于P,Q两点,在旋转过程中,若D′P=a,QB′=b,试用a,b来表示PQ,并说明理由.
(3)如图3,当旋转角等于45°时,求△APQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.一个正方形的面积是12,它的边长在两个相邻整数之间,则这两个整数是(  )
A.1和2B.2和3C.3和4D.4和5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,AB是⊙M的直径弦CD⊥AB于点O,点E是BC上的一点,且AC=CE.
(1)求证:∠ACG=∠CAG;
(2)当∠ACG=30°,MA=4时,求点C和点E坐标;
(3)在(2)的条件下,点P在$\widehat{EBD}$上运动时,是否存在一点P使得四边形GDPE的面积最大?如果存在,求出点P的坐标和最大面积的值;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.AB、CD相交于点O,DE是△DOB的角平分线,若∠B=∠C,∠A=52°,则∠EDB=26°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.感知:如图①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的顶点D、F分别在边AC、BC上,易证:AD=BF(不需要证明);
探究:将图①的正方形CDEF绕点C顺时针旋转α(0°<α<90°),连接AD、BF,其他条件不变,如图②,求证:AD=BF;
应用:若α=45°,CD=$\sqrt{2}$,BE=1,如图③,则BF=$\sqrt{5}$.

查看答案和解析>>

同步练习册答案