精英家教网 > 初中数学 > 题目详情

如图,AB是⊙的直径,PAB上一点(与点AB不重合)QPAB,垂足为P点,直线QA交⊙C点,过点C作⊙的切线交直线QP于点D.则△CDQ是等腰三角形.对上述命题证明如下:

证明:连接OC

OA=OC,∴∠A=1

CD切⊙C点,

∴∠OCD=90°,∴∠1+2=90°,∴∠A+2=90°

在Rt△QPA中,∠QPA=90°

∴∠A+Q=90°,∴∠2=Q,∴DQ=DC

即△CDQ是等腰三角形.

问题:对上述命题,当点PBA的延长线上时,其他条件不变.

如图所示,结论CDQ是等腰三角形还成立吗?若成立,请给予证明;若不成立,请说明理由.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AB=6,延长AB到点C,使BC=AB,D是⊙O上一点,DC=6
2
.求证:
(1)△CDB∽△CAD;
(2)CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD•BC=OB•BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,AB是⊙O的直径,∠D=30°,则∠ABC的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,△ACD内接于⊙O,CG⊥AB于E,AD延长后交GC于F.
(1)求证:△AFC∽△ACD;
(2)若CD=2,AD=3,AC=4,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,若AB=4cm,∠D=30°,则AC=
2
2
cm.

查看答案和解析>>

同步练习册答案