精英家教网 > 初中数学 > 题目详情
已知,如图,D为△ABC内一点连接BD、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,BE、
CE交于E,连接DE.
(1)求证:
BC
AB
=
BE
BD

(2)求证:△DBE∽△ABC.
分析:(1)根据题意可知∠CBE=∠ABD,∠BCE=∠BAD可得出△CBE∽△ABD,再根据相似三角形的对应边成比例即可得出结论;
(2)由(1)知
BC
AB
=
BE
BD
,再由∠CBE=∠ABD可知∠DBE=∠ABC,故可得出△DBE∽△ABC.
解答:证明:(1)在△CBE和△ABD中,
∵∠CBE=∠ABD,∠BCE=∠BAD,(1分)
∴△CBE∽△ABD.(2分)
BC
AB
=
BE
BD
.(3分)
BC
BE
=
AB
BD
.(4分)
BC
AB
=
BE
BD


(2)由(1)可知
BC
AB
=
BE
BD

∵∠CBE=∠ABD,
∴∠CBE+∠DBC=∠ABD+∠DBC.(5分)
即∠DBE=∠ABC.(6分)
∴△DBE∽△ABC.(7分)
点评:本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD的对角线AC、BD交于精英家教网点E.
(1)求证:△ABE∽△DBC;
(2)已知BC=
5
2
,CD=
5
2
,求sin∠AEB的值;
(3)在(2)的条件下,求弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径等于4,tan∠ACB=
43
,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45度.给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣弧DE的2倍;⑤AE=BC.其中正确结论的序号是(  )
A、①②③B、①②④C、①②⑤D、①②③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,BD为ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.求证:DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,BD为∠ABC的角平分线,且BD=BC,E为BD的延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①∠ABE=∠ACE;②∠BCE+∠BCD=180°;③AE=EC;④BE+BD=2BF,其中正确的是(  )

查看答案和解析>>

同步练习册答案