精英家教网 > 初中数学 > 题目详情
如图,已知抛物线的顶点为M(5,6),且经过点C(-1,0).
(1)求抛物线的解析式;
(2)设抛物线与y轴交于点A,过A作AB∥x轴,交抛物线于另一点B,则抛物线上存在点P,使△ABP的面积等于△ABO的面积,请求出所有符合条件的点P的坐标;
(3)将抛物线向右平移,使抛物线经过点(5,0),请直接答出曲线段CM(抛精英家教网物线图象的一部分,如图中的粗线所示)在平移过程中所扫过的面积.
分析:(1)设抛物线的解析式为y=a(x-5)2+6,将C(-1,0)代入,利用待定系数法可得a=-
1
6
,则所求抛物线的解析式为y=-
1
6
(x-5)2+6=-
1
6
x2+
5
3
x+
11
6

(2)先根据函数解析式求得OA=
11
6
,结合AB∥x轴,OA⊥AB的性质可知点P到AB的距离为
11
6
,设点P的坐标为(x,
11
3
)
或(x,0),①将(x,
11
3
)
代入y=-
1
6
x2+
5
3
x+
11
6
,解得x1=5+
14
x2=5-
14

②将(x,0)代入y=-
1
6
x2+
5
3
x+
11
6
,解得x3=-1,x4=11,综合可知点P的坐标为(5+
14
11
3
)
(5-
14
11
3
)
、(-1,0)、(11,0).
(3)曲线段CM在平移过程中所扫过的面积可看作为底为6,高为6的平行四边形的面积,故为36.
解答:解:(1)设抛物线的解析式为y=a(x-5)2+6(1分)
将C(-1,0)代入,
得0=a(-1-5)2+6,
解得a=-
1
6
(2分)
∴所求抛物线的解析式为y=-
1
6
(x-5)2+6=-
1
6
x2+
5
3
x+
11
6
(1分);

(2)∵当x=0时,y=
11
6

∴OA=
11
6
(1分)
∵AB∥x轴,
∴OA⊥AB
∵S△ABO=S△ABP
∴点P到AB的距离为
11
6
(2分)
∴设点P的坐标为(x,
11
3
)
或(x,0)
(x,
11
3
)
代入y=-
1
6
x2+
5
3
x+
11
6

解得x1=5+
14
x2=5-
14
(2分)
将(x,0)代入y=-
1
6
x2+
5
3
x+
11
6

解得x3=-1,x4=11(2分)
∴点P的坐标为(5+
14
11
3
)
(5-
14
11
3
)
、(-1,0)、(11,0)(1分);

(3)∵曲线段CM在平移过程中所扫过的面积可看作为底为6,高为6的平行四边形的面积,
∴所扫过的面积为36.(2分)
点评:本题考查二次函数的综合应用,其中涉及到的知识点有待定系数法求函数解析式和二次函数和方程之间的关系以及利用数形结合的方法求算几何图形的面积等.要熟练掌握才能灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是抛物线拱桥,已知水位在AB位置时,水面宽4
6
m
,水位上升3m,达到警戒线CD,这时水面宽4
3
m
.若洪水到来时,水位以每小时0.25m的速度上升,求水过警戒线后几小时淹到拱桥顶?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在斜坡A处立一旗杆AB(旗杆与水平面垂直),一小球从斜坡O点抛出(如图),小球擦旗杆顶B而过,落地时撞击斜坡的落点为C,已知A点与O点的距离为
5
2
米,旗杆AB高为3米,C点的垂精英家教网直高度为3.5米,C点与O点的水平距离为7米,以O为坐标原点,水平方向与竖直方向分别为x轴、y轴,建立直角坐标系.
(1)求小球经过的抛物线的解析式(小球的直径忽略不计);
(2)H为小球所能达到的最高点,求OH与水平线Ox之间夹角的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在斜坡A处立一旗杆AB(旗杆与水平面垂直),一小球从斜坡O点抛出(如图),小球擦旗杆顶B而过,落地时撞击斜坡的落点为C,已知A点与O点的距离为数学公式米,旗杆AB高为3米,C点的垂直高度为3.5米,C点与O点的水平距离为7米,以O为坐标原点,水平方向与竖直方向分别为x轴、y轴,建立直角坐标系.
(1)求小球经过的抛物线的解析式(小球的直径忽略不计);
(2)H为小球所能达到的最高点,求OH与水平线Ox之间夹角的正切值.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(2001•青海)在斜坡A处立一旗杆AB(旗杆与水平面垂直),一小球从斜坡O点抛出(如图),小球擦旗杆顶B而过,落地时撞击斜坡的落点为C,已知A点与O点的距离为米,旗杆AB高为3米,C点的垂直高度为3.5米,C点与O点的水平距离为7米,以O为坐标原点,水平方向与竖直方向分别为x轴、y轴,建立直角坐标系.
(1)求小球经过的抛物线的解析式(小球的直径忽略不计);
(2)H为小球所能达到的最高点,求OH与水平线Ox之间夹角的正切值.

查看答案和解析>>

科目:初中数学 来源:2001年青海省中考数学试卷(解析版) 题型:解答题

(2001•青海)在斜坡A处立一旗杆AB(旗杆与水平面垂直),一小球从斜坡O点抛出(如图),小球擦旗杆顶B而过,落地时撞击斜坡的落点为C,已知A点与O点的距离为米,旗杆AB高为3米,C点的垂直高度为3.5米,C点与O点的水平距离为7米,以O为坐标原点,水平方向与竖直方向分别为x轴、y轴,建立直角坐标系.
(1)求小球经过的抛物线的解析式(小球的直径忽略不计);
(2)H为小球所能达到的最高点,求OH与水平线Ox之间夹角的正切值.

查看答案和解析>>

同步练习册答案