【题目】如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,在AB的延长线上取一点E,使EF=ED,过点A作⊙O的切线交ED的延长线于点G.
(1)求证:GE是⊙O的切线;
(2)若OF:OB=1:3,⊙O的半径为3,求DE和AG的长.
【答案】(1)见解析;(2)DE=4,AG=6.
【解析】
(1)连接,利用等腰三角形的性质以及CO⊥AB得出∠CDO+∠CDE=90°,进而得出答案;
(2)在Rt△ODE中,设DE=x,利用勾股定理可求得的长,易判定Rt△EOD∽Rt△EGA,利用相似三角形的性质可求出AG的长.
(1)证明:连接OD,
∵OC=OD,
∴∠C=∠ODC,
∵OC⊥AB,
∴∠COF=90°,
∴∠C+∠CFO=90°,
∴∠ODC+∠CFO=90°,
∵EF=ED,
∴∠EFD=∠FDE,
∵∠CFO=∠EFD,
∴∠CDO+∠CDE=90°,
∴GE为⊙O的切线;
(2)解:∵OF:OB=1:3,⊙O的半径为3,
∴OF=1,
在Rt△ODE中,OD=3,DE=x,则EF=ED=x,OE=1+x,
∵OD2+DE2=OE2,
∴32+x2=(x+1)2,解得x=4,
∴DE=4,OE=5,
∵AG为⊙O的切线,
∴AG⊥AE,
∴∠GAE=90°,
而∠OED=∠GEA,
∴Rt△EOD∽Rt△EGA,
∴,即,
∴AG=6.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.
(1)求证:直线BF是⊙O的切线;
(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长和扇形DOE的面积;
(3)在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O的距离为5,则r的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为( )
A. 8S B. 9S C. 10S D. 11S
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c 如图所示,直线x=-1是其对称轴,
(1)确定a,b,c, Δ=b2-4ac的符号,
(2)求证:a-b+c>0,
(3)当x取何值时,y>0;当x取何值时y<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市以20元/千克的进货价购进了一批绿色食品,如果以30元/千克销售这些绿色食品,那么每天可售出400千克.由销售经验可知,每天的销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系.
(1)试求出y与x的函数关系式;
(2)设该超市销售该绿色食品每天获得利润w元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线:y=﹣+4与x轴、y轴分别別交于点M、点N,等边△ABC的高为3,边BC在x轴上,将△ABC沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点O重合时,解答下列问题:
(1)点A1的坐标为 .
(2)求△A1B1C1的边A1C1所在直线的解析式;
(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中秋节前夕,某公司的李会计受公司委派去超市购买若干盒美心月饼,超市给出了该种月饼不同购买数量的价格优惠,如图,折线ABCD表示购买这种月饼每盒的价格y(元)与盒数x(盒)之间的函数关系.
(1)当购买这种月饼盒数不超过10盒时,一盒月饼的价格为 元;
(2)求出当10<x<25时,y与x之间的函数关系式;
(3)当时李会计支付了3600元购买这种月饼,那么李会计买了多少盒这种月饼?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com