精英家教网 > 初中数学 > 题目详情
3.如图,一楼房AB后有一假山,其坡度为i=1:$\sqrt{3}$,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=26米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45°.(注:坡度i是指坡面的铅直高度与水平宽度的比)
(1)求休息亭的铅直高度;     
(2)求楼房AB的高.(结果保留根号)

分析 (1)过点E作EF⊥BC的延长线于点F.在Rt△CEF中,求出CF=$\sqrt{3}$EF,然后根据勾股定理解答;
(2)过点E作EH⊥AB于点H.在Rt△AHE中,∠HAE=45°,结合(1)中结论得到CF的值,再根据AB=AH+BH,求出AB的值.

解答 解:(1)过点E作EF⊥BC的延长线于F,EH⊥AB于点H,
在Rt△CEF中,∵i=$\frac{EF}{CF}$=$\frac{1}{\sqrt{3}}$=tan∠ECF,
∴∠ECF=30°,
∴EF=$\frac{1}{2}$CE=$\frac{1}{2}$×18=9(米).
答:休息亭的铅直高度为9米;

(2)BH=EF=9米,CF=9$\sqrt{3}$米,
HE=BF=BC+CF=(26+9$\sqrt{3}$)米,
在Rt△AHE中,∵∠HAE=45°,
∴AH=HE=(26+9$\sqrt{3}$)米,
∴AB=AH+HB=(35+9$\sqrt{3}$)米.
答:楼房AB的高为(35+9$\sqrt{3}$)米.

点评 本题考查了解直角三角形的应用--仰角俯角问题、坡度坡角问题,要求学生能借助仰角构造直角三角形并解直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,已知,C为线段AB上一点,D为AC的中点,E为BC的中点,F为DE的中点
(1)如图1,若AC=4,BC=6,求CF的长;
(2)若AB=16CF,求$\frac{AC}{CB}$的值;
(3)若AC>BC,AC-BC=a,取DC的中点G,CE的中点H,GH的中点P,求CP的长(用含a的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.有一个一次函数的图象,黄丽和张军分别说出了它的两个特征.
黄丽:图象与y轴交于点(0,6)
张军:图象与x轴、y轴围成的三角形的面积是12.
你知道这个一次函数的关系式吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,正方形ABCD中,E、F分别在AD、DG上,EF的延长线交BC的延长线于G点,且∠AEB=∠BEG;
(1)求证:∠ABE=$\frac{1}{2}$∠BGE;
(2)如图2,若AB=5,AE=2,求S△BEG
(3)如图3,若E、F两点分别在AD、DC上运动,其它条件不变,试问:线段AE、EF、FC三者之间是否存在确定的数量关系?若存在,请写出它们之间的数量关系,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.阅读下面问题:
$\frac{1}{1+\sqrt{2}}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1;
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
$\frac{1}{\sqrt{5}+2}$=$\frac{\sqrt{5}-2}{(\sqrt{5}+2)(\sqrt{5}-2)}$=$\sqrt{5}$-2.
试求:
(1)$\frac{1}{\sqrt{n+1}+\sqrt{n}}$(n为正整数)=$\sqrt{n+1}-\sqrt{n}$.  
(2)利用上面所揭示的规律计算:
$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2013}+\sqrt{2014}}$+$\frac{1}{\sqrt{2014}+\sqrt{2015}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知m=$\sqrt{3}$×$\sqrt{7}$,若a,b是两个两个连续整数,且a<m<b,则a+b=9.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知实数a、b满足(a-b+$\sqrt{3}$)2+(a+b-2)2=0,则a2-b2=-2$\sqrt{3}$,a2+b2=$\frac{7}{2}$,ab=$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如果a2+mab+9b2是一个完全平方式,则m应是(  )
A.3B.±3C.6D.±6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.(-a5)•(-a22=-a9,(-2x)3÷4x=-2x2

查看答案和解析>>

同步练习册答案