精英家教网 > 初中数学 > 题目详情

如图,在直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,点F是CD边上一点,将纸片沿BF折叠,点C落在E点,使直线BE经过点D,若BF=CF=8,则AD的长为         .

 

【答案】

【解析】

试题分析:利用等边对等角可以得到∠FBC=∠C=30°,再利用折叠的性质可以得到∠EBF=∠CBF=30°,从而可以求得∠BDF的度数,即可以求得线段BD,然后在直角三角形ABD中求解即可.

∵BF=CF=8,

∴∠FBC=∠C=30°,

∵折叠纸片使BC经过点D,点C落在点E处,BF是折痕,

∴∠EBF=∠CBF=30°,

∴∠EBC=60°,

∴∠BDF=90°

∵∠EBC=60°

∴∠ADB=60°,

∵BF=CF=8.

∴BD=BF?sin60°=

∴在Rt△BAD中,AD=BD×sin30°=

考点:梯形,矩形、直角三角形的相关知识

点评:解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形纸片ABCD中,AD∥BC,∠ABC=90°,将纸片沿过点A的直线折叠,使点B与点D重合,折痕为AG.连接DG并展开纸片.
(1)判断四边形ABGD的形状并说明你的理由;
(2)连接BD,交AG于点E,作∠BAG的平分线,交BD于点F,求证:EF+
12
AG=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,点F是CD边上的一点,将纸片沿BF折叠,点C落在E点,使直线BE经过点D,若BF=CF=8,则AD的长为
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形纸片ABCD中,AB∥DC,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.
(1)判断四边形ADEF的形状,并说明理由.
(2)取线段AF的中点G,连接EG、DG,如果DG∥CB,试说明四边形GBCE是等腰梯形.

查看答案和解析>>

科目:初中数学 来源:2013届上海市虹口区中考二模数学试卷(带解析) 题型:填空题

如图,在直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,点F是CD边上一点,将纸片沿BF折叠,点C落在E点,使直线BE经过点D,若BF=CF=8,则AD的长为         .

查看答案和解析>>

同步练习册答案