【题目】为了配合全市“创建全国文明城市”活动,某校共1200名学生参加了学校组织的创建全国文明城市知识竞赛,拟评出四名一等奖.
(1)求每一位同学获得一等奖的概率;
(2)学校对本次竞赛获奖情况进行了统计,其中七、八年级分别有一名同学获得一等奖,九年级有2名同学获得一等奖,现从获得一等奖的同学中任选两人参加全市决赛,请通过列表或画树状图的方法,求所选出的两人中既有七年级又有九年级同学的概率.
【答案】(1);(2).
【解析】
(1)让一等奖的学生数除以全班学生数即为所求的概率;
(2)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.
(1)因为一共有1200名学生,每人被抽到的机会是均等的,四名一等奖,所以(每一位同学获得一等奖);
(2)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)
共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,
所以所选出的两人中既有七年级又有九年级同学的概率=.
科目:初中数学 来源: 题型:
【题目】对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:
(尝试)
(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为 ;
(2)判断点A是否在抛物线L上;
(3)求n的值;
(发现)
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 .
(应用)
二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,点D和点E分别在AB和BC上,连接DE,将△BDE沿DE翻折,点B的对应点B′刚好落在AC上,若AB'=2B'C,AB=3,BC=6,则BE的长为( )
A.3B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,顶点为(11,﹣)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,8).
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)连接AC,在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形,若存在,请直接写出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知的半径为1,按如下步骤作图:
①以上的点A为圆心,1为半径画弧交于点B;
②依次在上取点C和D,使得;
③分别以点A和D为圆心,AC长为半径画弧交于点E;
④以点A为圆心,OE长为半径画弧交于点F.
则以下说法不正确的是( )
A.AC=B.AFC.∠ACF=45°D.∠BEO=30°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点A、B的坐标分别为A(8,0)和B(0,6),点P为x轴负半轴上的一个动点,画△ABP的外接圆,圆心为M,连结BM并延长交圆于点C,连结CP.
(1)求证:.∠OBP=∠ABC
(2)当的直径为14时,求点P的坐标.
(3)如图2,连结OC,求OC的最小值和OC达到最小值时△ABP的外接圆圆心M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校九年级学生阅读课外书籍的情况,某研究小组随机采访该校九年级的20位同学,得到这20位同学阅读课外书册数的统计信息,数据如下:
册数 | 0 | 2 | 3 | 5 | 6 | 8 | 10 |
人数 | 1 | 2 | 4 | 8 | 2 | 2 | 1 |
(1)这20位同学阅读课外书册数的众数是 册,中位数是 册;
(2)若该校九年级有600名学生,试估计该校九年级学生阅读课外书的总册数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是x轴正半轴上的动点,点B的坐标为(0,4),将线段AB的中点绕点A按顺时针方向旋转90°得点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连接AC、BC、CD,设点A的横坐标为t.
(1)线段AB与AC的数量关系是 ,位置关系是 .
(2)当t=2时,求CF的长;
(3)当t为何值时,点C落在线段BD上?求出此时点C的坐标;
(4)设△BCE的面积为S,求S与t之间的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com