精英家教网 > 初中数学 > 题目详情

【题目】将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上,先从中随机的抽取一张卡片(不放回),将该卡片正面上的数字作为十位数字,再随机的抽取一张卡片,将该卡片正面上的数字作为个位数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.

【答案】解:画树状图得:
∵共有12种等可能的结果,组成的两位数恰好是4的倍数的有3种情况,即12,24,32,
∴组成的两位数恰好是4的倍数的概率是 =
【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的两位数恰好是4的倍数的情况,再利用概率公式即可求得答案.
【考点精析】通过灵活运用列表法与树状图法,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图抛物线y=ax2+bx+c,下列式子正确的是(
A.a+b+c<0
B.b2﹣4ac<0
C.c<2b
D.abc>0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:OE平分,点ABC分别是射线OMOEON上的动点BC不与点O重合,连接AC交射线OE于点

如图1,若,则

的度数是______;

时,______;当时,______.

如图2,若,则是否存在这样的x的值,使得中有两个相等的角?若存在,求出x的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,于点F,于点M,,已知动点E的速度从A点向F点运动,同时动点G的速度从C点向A点运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t.

______;

的值;

在整个运动过程中,当t取何值时,全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4 cm,BC=8 cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P,Q的速度的速度都是1 cm/s,连结PQ,AQ,CP,设点P,Q运动的时间为t(s).

(1)当t为何值时,四边形ABQP是矩形?

(2)当t为何值时,四边形AQCP是菱形?

(3)分别求出(2)中菱形AQCP的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠A=60°,点E,F分别在AB,AC上,把∠A沿着EF对折,使点A落在BC上点D处,且使ED⊥BC.
(1)猜测AE与BE的数量关系,并说明理由;
(2)求证:四边形AEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二 次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四 边形ABCD为1阶准菱形.

(I)判断与推理:

(i)邻边长分别为2和3的平行四边形是_________阶准菱形;

(ii)为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,请证明四边形ABFE是菱形.

)操作与计算:

已知平行四边形ABCD的邻边长分别为l,a(a>1),且是3阶准菱形,请画出平行四边形ABCD及裁剪线的示意图,并在图形下方写出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD⊥AC,垂足为D,AB=AC=9,BC=6,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.

(1)求证:四边形ABCD是平行四边形;

(2)若AC=2OE,试判断四边形AECF的形状,并说明理由.

查看答案和解析>>

同步练习册答案