精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.
(1)证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠ODA=∠CAD,
∴ODAC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∵OD为半径,
∴BC是⊙O切线;

(2)在Rt△ADC中,AC=8,CD=6,
由勾股定理得:AD=10.
连接DE,
∵AE为直径,
∴∠EDA=∠C=90°,
∵∠CAD=∠EAD,
∴△DCA△EDA,
AE
AD
=
AD
AC

AE
10
=
10
8

AE=12.5.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

一个点到圆上的最小距离为4cm,最大距离为9cm,则圆的半径为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个点到一个圆的最短距离是3cm,最长距离是6cm,则这个圆的半径是(  )
A.4.5cmB.1.5cm
C.4.5cm或1.5cmD.9cm或3cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的割线PAB交⊙O于点A、B,PA=7cm,AB=5cm,PO=10cm,则⊙O的半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm.点O以2cm/s的速度在直线BC上从左向右运动,设运动时间为t(s),当t=0s时,点O在△ABC的左侧,OC=5cm.以点O为圆心、
1
2
t
cm长度为半径r的半圆O与直线BC交于D、E两点
(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?
(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,求CE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知等腰△ABC,AC=BC=10,AB=12,以BC为直径作⊙O交AB点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠A的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E,猜想:△DCE是怎样的三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,BD是⊙O的直径,AB与⊙O相切于点B,过点D作OA平行线交⊙O于点C,AC与BD的延长线相交于点E.
(1)试探究AE与⊙O的位置关系,并说明理由;
(2)已知EC=a,ED=b,AB=c,请你思考后,选用以上适当的数据,计算⊙O的半径r.

查看答案和解析>>

同步练习册答案