精英家教网 > 初中数学 > 题目详情
11.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:四边形ADCF是菱形;
(2)若AC=8,AB=10,求菱形ADCF的面积.

分析 (1)可先证得△AEF≌△DEB,可求得AF=DB,可证得四边形ADCF为平行四边形,再利用直角三角形的性质可求得AD=CD,可证得结论;
(2)根据条件可证得S菱形ADCF=S△ABC,结合条件可求得答案.

解答 (1)证明:
∵E是AD的中点,
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,
在△AEF和△DEB中
$\left\{\begin{array}{l}{∠AFE=∠DBE}\\{∠AEF=∠DEB}\\{AE=DE}\end{array}\right.$
∴△AEF≌△DEB(AAS),
∴AF=DB,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=CD=$\frac{1}{2}$BC,
∴四边形ADCF是菱形;
(2)解:
设AF到CD的距离为h,
∵AF∥BC,AF=BC=CD,∠BAC=90°,
∴S菱形ADCF=CD•h=$\frac{1}{2}$BC•h=S△ABC=$\frac{1}{2}$AB•AC=40.

点评 本题主要考查菱形的判定和性质及直角三角形的性质,掌握菱形的判定方法是解题的关键,注意直角三角形斜边上的中线等于斜边的一半的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.解下列方程组或不等式(组)
(1)$\left\{\begin{array}{l}{y=2x-3}\\{4x-3y=1}\end{array}\right.$
(2)x-$\frac{x+2}{2}$≤$\frac{2x-5}{3}$
(3)$\left\{\begin{array}{l}{2x+5≤3(x+2)}\\{\frac{x-1}{2}<\frac{x}{3}}\end{array}\right.$,并写出其整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取5次,记录如下:
8588848583
8387848685
(1)请你分别计算这两组数据的平均数;
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=ax2+x+c(a≠0)经过点A(-1,0),B(2,0)两点,与y轴相交于点C,点D为抛物线的顶点.
(1)求抛物线的解析式及点D的坐标;
(2)△ABC的外接圆与抛物线的另一交点为E,直接写出E点的坐标;
(3)记△ABC得外接圆圆心为M,求圆心M的坐标;
(4)在x轴上有一点P,且∠EBO+∠MPO=α,当tanα=3时,求OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系xOy中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(4,4),反比例函数y=$\frac{k}{x}$(x>0,k≠0)的图象经过线段BC的中点D,交正方形OABC的另一边AB于点E.
(1)求k的值;
(2)如图①,若点P是x轴上的动点,连接PE,PD,DE,当△DEP的周长最短时,求点P的坐标;
(3)如图②,若点Q(x,y)在该反比例函数的图象上运动(不与点D重合),过点Q作OM⊥y轴,垂足为M,作QN⊥BC所在直线,垂足为N,记四边形CMQN的面积为S,求S关于x的函数表达式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知在平面直角坐标系xOy中,O为坐标原点,点A,B分别在x轴上(点A在原点左侧,点B在原点右侧),OB=4OA,经过点A,B的抛物线交y轴于点C(0,2),且∠ACB=90°.
(1)求抛物线的解析式;
(2)点N为该抛物线第一象限上一点,满足∠NOC=∠CBO,联结BN,NO,求△BON的面积;
(3)点D为抛物线对称轴上一点,且在x轴下方,点E在y轴负半轴上,当以B,E,D为顶点的三角形与△ABC相似时(∠DBE与∠ABC为对应角),求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)-2×32+5
(1)-14-[1-(1-0.5×$\frac{1}{3}$)]×6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解分式方程:$\frac{4}{{x}^{2}-4}$-1=$\frac{x}{2-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算($\frac{1}{2}$)-2-20+(-3)2

查看答案和解析>>

同步练习册答案