【题目】如图,在△ABC中,∠ACB=90°,点P在∠BCA平分线CD上,且PA=PB.
(1)用尺规作出符合要求的点P(保留作图痕迹,不需要写作法);
(2)判断△ABP的形状(不需要写证明过程)
【答案】(1)见解析;(2)等腰直角三角形.
【解析】
(1)由PA=PB知点P同时还在线段AB的中垂线上,据此作图可得;
(2)点P分别作PE⊥AC、PF⊥CB,垂足为E、F,由全等三角形的判定定理得出Rt△APE≌Rt△BPF,再由全等三角形的性质即可判断出△ABP是等腰直角三角形.
(1)如图所示,点P即为所求;
(2)△ABP是等腰直角三角形,
理由如下:过点P分别作PE⊥AC、PF⊥CB,垂足为E、F.
∵PC平分∠ACB,PE⊥AC、PF⊥CB,垂足为E、F,
∴PE=PF.
在Rt△APE与Rt△BPF中,
∵,
∴Rt△APE≌Rt△BPF.
∴∠APE=∠BPF,
∵∠PEC=90°,∠PFC=90°,∠ECF=90°,
∴∠EPF=90°,
∴∠APB=90°.
又∵PA=PB,
∴△ABP是等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】解不等式组请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得___________;
(Ⅱ)解不等式②,得___________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.若不够卡购物和使用优惠卡购物分别视为方式一购物和方式二购物,且设顾客购买商品的金额为元.
(Ⅰ)根据题意,填写下表:
商品金额(元) | 300 | 600 | 1000 | … | |
方式一的总费用(元) | 300 | 600 | 1000 | … | |
方式二的总费用(元) | 540 | … |
(Ⅱ)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?
(Ⅲ)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?
(Ⅳ)小张按合算的方案,把这台冰箱买下,如果该商场还能盈利,那么这台冰箱的进价是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
我们知道一次函数(,是常数)的图象是一条直线,到高中学习时,直线通常写成 (,是常数)的形式,点到直线的距离可用公式计算.
例如:求点到直线的距离.
解:∵
∴其中
∴点到直线的距离为:
根据以上材料解答下列问题:
(1)求点到直线的距离;
(2)如图,直线沿轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有辆货车未出租,日租金总收入为元;旺季所有的货车每天能全部租出,日租金总收入为元.
(1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?
(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨元,每天租出去的货车就会减少辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长于点Q,下列结论正确的有( )个.
①AE⊥BF;②QB=QF;③FG=AG;④sin∠BQP=;⑤SECPG=3S△BGE
A. 5B. 4C. 3D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次海上救援中,两艘专业救助船同时收到某事故渔船的求救讯息,已知此时救助船在的正北方向,事故渔船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故渔船与救助船相距120海里.
(1)求收到求救讯息时事故渔船与救助船之间的距离;
(2)若救助船A,分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船处搜救,试通过计算判断哪艘船先到达.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.
(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.
(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com