精英家教网 > 初中数学 > 题目详情
29、如图,已知在锐角△ABC中,∠ABC=2∠C,∠ABC的平分线与AD垂直于D,求证:AC=2BD.
分析:根据题意在BD上截取DF=DE,连接AF,结合题意推出△ADF≌△ADE,即得AE=AF,∠AFD=∠AEF,推出AF=BF,即可推出结论.
解答:证明:在BD上截取DF=DE,连接AF,
∵DF=DE,AD⊥BF,AD=AD,
∴△ADF≌△ADE,(3分)
∴AE=AF,∠AFD=∠AEF
∵∠ABC=2∠C,BE是∠ABC的平分线,
∴∠ABE=∠C=∠EBC,
∵∠AFE=∠ABE+∠BAF,∠AEF=∠EBC+∠C
∴∠FAB=∠ABF,
∴AF=BF(等角对等边),
∴AC=AE+EC=2BD.(6分)
点评:本题主要考查等腰三角形的性质、外角的性质、全等三角形的判定和性质,关键在于求证△ADF≌△ADE,∠FAB=∠ABF.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠C=90°,它的三边长分别为a,b,c,对于同一个锐精英家教网角A的正弦,余弦存在关系式sin2A+cos2A=1试说明.
解:∵sinA=
 
,cosA=
 

∴sin2A+cos2A=
 

∵a2+b2=c2,∴sin2A+cos2A=1.
(1)在横线上填上适当内容;
(2)若∠α为锐角,利用(1)的关系式解决下列问题.
①若sinα=
4
5
,求cosα的值;cosα=
3
5

②若sinα+cosα=1.1,求sinαcosα的值.sinαcosα=0.105.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知在Rt△ABC中,∠C=90°,它的三边长分别为a,b,c,对于同一个锐角A的正弦,余弦存在关系式sin2A+cos2A=1试说明.
解:∵sinA=______,cosA=______.
∴sin2A+cos2A=______,
∵a2+b2=c2,∴sin2A+cos2A=1.
(1)在横线上填上适当内容;
(2)若∠α为锐角,利用(1)的关系式解决下列问题.
①若sinα=数学公式,求cosα的值;cosα=数学公式
②若sinα+cosα=1.1,求sinαcosα的值.sinαcosα=0.105.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知在锐角△ABC中,∠ABC=2∠C,∠ABC的平分线与AD垂直于D,求证:AC=2BD.

查看答案和解析>>

科目:初中数学 来源:《25.2 锐角三角函数》2010年同步练习(解析版) 题型:填空题

如图,已知在Rt△ABC中,∠C=90°,它的三边长分别为a,b,c,对于同一个锐角A的正弦,余弦存在关系式sin2A+cos2A=1试说明.
解:∵sinA=    ,cosA=   
∴sin2A+cos2A=   
∵a2+b2=c2,∴sin2A+cos2A=1.
(1)在横线上填上适当内容;
(2)若∠α为锐角,利用(1)的关系式解决下列问题.
①若sinα=,求cosα的值;cosα=
②若sinα+cosα=1.1,求sinαcosα的值.sinαcosα=0.105.

查看答案和解析>>

同步练习册答案