精英家教网 > 初中数学 > 题目详情

如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABC和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN,试判断△BMN的形状,并说明理由.

解:△BMN为等边三角形.理由如下:
∵等边△ABD、等边△BCE,
∴∠ABD=∠CBE=60°,
∴∠ABD+∠DBE=∠EBC+∠DBE,
∴∠ABE=∠DBC,
∵AB=DB,BE=CB,
∴△ABE≌△DBC(SAS),
∴∠CDB=∠BAE,
∵∠DBE=180°-60°-60°=60°=∠ABD,
在△ABM和△DBN中
∴△ABM≌△DBN,
∴BM=BN,
∵∠DBE=60°,
∴△BMN是等边三角形.
∴BD∥CE,
同理可证AD∥BE,
即可得△BCN∽△ACD,△ABM∽△ACE,
==
∵BC=CE,AD=AB,
∴BM=BN,
又∵∠MBN=180°-∠ABD-∠EBC=60°,
∴△BMN为等边三角形.
分析:首先证明△ABE≌△DBC,可得到能使△ABM≌△DBN的条件,即可求得BM=BN,根据∠MBN=60°即可求得△BMN为等边三角形.
点评:本题考查了全等三角形的判定,等边三角形的判定,本题中求得BM=BN是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,A、C、E三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,A、Q、R三点在一条直线上,S为直线外一点,∠AQS=136°,∠QRS=64°,则∠QSR=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A,B,C三点在同一平面内,从山脚缆车站A测得山顶C的仰角为45°,测得另一缆精英家教网车站B的仰角为30°,AB间缆绳长500米(自然弯曲忽略不计).(
3
≈1.73
,精确到1米)
(1)求缆车站B与缆车站A间的垂直距离;
(2)乘缆车达缆车站B,从缆车站B测得山顶C的仰角为60°,求山顶C与缆车站A间的垂直距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A、B、C三点在⊙O上,∠BAC=60°,若⊙O的半径OC为12,则劣弧BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,A,O,B三点在同一直线上,OC,OE分别是∠BOD,∠AOD的平分线,OC与OE有什么位置关系?为什么?

查看答案和解析>>

同步练习册答案