【题目】如图,抛物线经过点、.是线段上一动点(点不与、重合),过点作轴的垂线交抛物线于点,交线段于点.过点作,垂足为点.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/18/2206393160556544/2207286529548288/STEM/a9696d0cbdac438aa94c80bfc838afd4.png]
(1)求该抛物线的解析式;
(2)试求线段的长关于点的横坐标的函数解析式,并求出的最大值.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.
(1)证明:△BOE≌△DOF;
(2)当EF⊥AC时,求证四边形AECF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠ACB=90°.
求作:射线CG,使得CG∥AB.
下面是小东设计的尺规作图过程.
作法:
①以点A为圆心,适当长为半径作弧,分别交AC,AB于D,E两点;
②以点C为圆心,AD长为半径作弧,交AC的延长线于点F;
③以点F为圆心,DE长为半径作弧,两弧在∠FCB内部交于点G;
④作射线CG.所以射线CG就是所求作的射线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接FG、DE.
∵△ADE ≌ △_________,
∴∠DAE = ∠_________.
∴CG∥AB(___________________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.
(1)求抛物线的解析式,并直接写出点D的坐标;
(2)当△AMN的周长最小时,求t的值;
(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校对九年级学生课外阅读情况进行了随机抽样检查,将调查的情况分为四个等级,并制作了如下统计图(部分信息未给出):
请根据统计图中的信息解答下列问题:
(1)这次随机抽样调查的样本容量是 ;扇形统计图中= ,= ;
(2)补全条形统计图;
(3)已知该校九年级学生中课外阅读为等级的共有人,请估计九年级中其他等级各有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.
(1)求a的值;
(2)若PN:MN=1:3,求m的值;
(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+ BP2的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.
(1)点A的坐标:_____;点B的坐标:_____;
(2)求△NOM的面积S与M的移动时间t之间的函数关系式;
(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;
(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(﹣2,0),B(0,1),以线段AB为边在第二象限作矩形ABCD,双曲线y=(k<0)过点D,连接BD,若四边形OADB的面积为6,则k的值是( )
A.﹣9B.﹣12C.﹣16D.﹣18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com