精英家教网 > 初中数学 > 题目详情
10.如图是一张长方形纸片ABCD,若AB=8,AD=6,E为AB上的一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是5或4$\sqrt{5}$或5$\sqrt{2}$.

分析 分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=$\sqrt{2}$AE=5 $\sqrt{2}$即可;
②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;
③当PA=PE时,底边AE=5;即可得出结论.

解答 解:解:如图所示:
①当AP=AE=5时,
∵∠BAD=90°,
∴△AEP是等腰直角三角形,
∴底边PE=$\sqrt{2}$AE=5 $\sqrt{2}$;
②当PE=AE=5时,
∵BE=AB-AE=8-5=3,∠B=90°,
∴PB=$\sqrt{P{E}^{2}-B{E}^{2}}$=4,
∴底边AP=$\sqrt{A{B}^{2}+P{B}^{2}}$=$\sqrt{{8}^{2}+{4}^{2}}$=4 $\sqrt{5}$;
③当PA=PE时,底边AE=5;
综上所述:等腰三角形AEP的对边长为5 $\sqrt{2}$或4 $\sqrt{5}$或5;
故答案为5或4$\sqrt{5}$或5$\sqrt{2}$.

点评 本题考查了矩形的性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质和等腰三角形的判定,进行分类讨论是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.中国的光伏技术不断进步,电子元件的尺寸大幅度缩小,在锌片上某种电子元件大约只占0.000 000 7mm2,这个数用科学记数法表示为(  )
A.7×10-7mm2B.0.7×10-6mm2C.7×10-8mm2D.70×10-8mm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.
(1)分别求当x≤1、1<x≤3时,y关于x的函数表达式;
(2)小刚一家出发2.5h时离目的地多远?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.正方形的一条对角线长为6,则正方形的面积是(  )
A.9B.36C.18D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为(  )
A.2$\sqrt{2}$B.4$\sqrt{2}$C.4D.8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.点P(-4,5)到x轴的距离等于5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图所示,正方形ABCD的边长为4,AD∥y轴,D(1,-1)
(1)写出A、B、C三个顶点的坐标;
(2)写出BC中点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列运算正确的是(  )
A.4x+5y=9xyB.(-m)3•m7=m10C.(x2y)5=x2y5D.a12÷a8=a4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若n(n≠0)是关于x的方程x2-mx+2n=0的根,则m-n的值为(  )
A.1B.2C.-1D.-2

查看答案和解析>>

同步练习册答案