精英家教网 > 初中数学 > 题目详情
6.已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.

(1)如图1,说明线段EH、CH、AE之间的数量关系;
(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,说明线段EH、CH、AE之间的数量关系.

分析 (1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
(2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.

解答 解:(1)EH2+CH2=AE2
如图1,过E作EM⊥AD于M,
∵四边形ABCD是菱形,
∴AD=CD,∠ADE=∠CDE,
∵EH⊥CD,
∴∠DME=∠DHE=90°,
在△DME与△DHE中,
$\left\{\begin{array}{l}{∠DME=∠DHE}\\{∠MDE=∠HDE}\\{DE=DE}\end{array}\right.$,
∴△DME≌△DHE,
∴EM=EH,DM=DH,
∴AM=CH,
在Rt△AME中,AE2=AM2+EM2
∴AE2=EH2+CH2

(2)如图2,CH=AE+EH,
理由:∵菱形ABCD,∠ADC=60°,
∴∠BDC=∠BDA=30°,DA=DC,
∵EH⊥CD,
∴∠DEH=60°,
在CH上截取HG,使HG=EH,
∵DH⊥EG,∴ED=DG,
又∵∠DEG=60°,
∴△DEG是等边三角形,
∴∠EDG=60°,
∵∠EDG=∠ADC=60°,
∴∠EDG-∠ADG=∠ADC-∠ADG,
∴∠ADE=∠CDG,
在△DAE与△DCG中,$\left\{\begin{array}{l}{DA=DC}\\{∠ADE=∠CDG}\\{DE=DG}\end{array}\right.$,
∴△DAE≌△DCG,
∴AE=GC,
∵CH=CG+GH,
∴CH=AE+EH.

点评 本题考查了全等三角形的判定和性质,菱形的性质,旋转的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图1所示,在?ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿射线AC的方向匀速平移得到△PNM,速度为1cm/s,同时,点Q从点C出发,沿射线CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动,如图2所示,设运动时间为t(s)(0<t<4).
(1)当t为何值时,PQ∥MN?
(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使得PQ=QM,若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知y与x+2成正比例,当x=3时,y=10,那么当y=16时,x=6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.一个三角形的两边长为8和10,则它的最长边的取值范围是10≤a<18.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在直线l上依次摆放着五个正方形(如图所示).已知斜放置的两个正方形的面积分别是2、3,正放置的三个正方形的面积依次是S1、S2、S3,则S1+2S2+S3=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长交AG于N.
(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;
(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;
(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S 关于时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图所示,△ABC中,AD⊥BC,AE平分∠BAC.
(1)若∠B=36°,∠C=70°,求∠DAE的度数;
(2)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)尺规作图:如图一,△DEF是由△ABC旋转得到的,请作出它的旋转中心. (不写作法,保留作图痕迹)
(2)如图二,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
①请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1
②请画出△ABC关于原点O成中心对称的图形△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.求不等式组$\left\{\begin{array}{l}{3x+3>5(x-1)①}\\{\frac{2x-2}{3}-1≤\frac{3x}{2}②}\end{array}\right.$的解集,并把它们的解集在数轴上表示出来.

查看答案和解析>>

同步练习册答案