精英家教网 > 初中数学 > 题目详情
如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,GE⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法:①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;④若∠EGH:∠ECH=2:7,则∠EGF=50度.其中正确的有(  )精英家教网
A、①②③④B、②③④C、①③④D、①②④
分析:灵活利用平行线的性质、等角的余角相等、四边形的内角和、等边对等角、三角形的面积公式、角平分线的性质进行分析.
解答:解:①中,根据两条直线平行,同旁内角互补,得∠BAC+∠ACD=180°,
再根据角平分线的概念,得∠GAC+∠GCA=
1
2
∠BAC+
1
2
∠ACD=
1
2
×180°=90°,
再根据三角形的内角和是180°,得AG⊥CG;
②中,根据等角的余角相等,得∠CGE=∠GAC,故∠BAG=∠CGE;
③中,根据三角形的面积公式,
∵AF=CF,∴S△AFG=S△CFG
④中,根据题意,得:在四边形GECH中,∠EGH+∠ECH=180度.
又∠EGH:∠ECH=2:7,则∠EGH=180°×
2
9
=40°,∠ECH=180°×
7
9
=140度.
∵CG平分∠ECH,∴∠FCG=
1
2
∠ECH=70°,
根据直角三角形的两个锐角互余,得∠EGC=20°.
∵FG=FC,
∴∠FGC=∠FCG=70°,
∴∠EGF=50°.
故上述四个都是正确的.
故选A.
点评:此题的综合性较强,运用了平行线的性质、等角的余角相等、四边形的内角和公式、等边对等角、三角形的面积公式、角平分线的概念.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB∥CD,AD与BC相交于点E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、如图,AB∥CD,P是BC上的一个动点,设∠CDP=∠1,∠CPD=∠2,请你猜想出∠1、∠2与∠B之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,∠1=58°,则∠2的度数是(  )

查看答案和解析>>

同步练习册答案