分析 (1)根据垂径定理得弧AC=弧AD,再根据圆周角定理得到∠F=∠ACD,又∠CAH=∠FAC,根据相似三角形的判定即可得到△ACH∽△AFC;
(2)连BF,根据直径所对的圆周角为直角得∠AFB=90°,则∠AFB=∠AEH=90°,而∠EAH=∠FAB,根据相似三角形的判定得到Rt△AEH∽Rt△AFB,则有AE:AF=AH:AB,变形得到AH•AF=AE•AB;
(3)根据三角形面积公式S△ACE=$\frac{1}{2}$AE•CE,S△BOD=$\frac{1}{2}$DE•OB,若S△AEC:S△BOD=1:4,则$\frac{1}{2}$DE•OB=4×$\frac{1}{2}$AE•CE,即DE•OB=4CE•AE,由直径AB⊥CD,根据垂径定理得CE=DE,则有OB=4AE,所以AB=8AE,即AE=$\frac{1}{2}$AB,
解答 (1)证明:∵直径AB⊥CD,
∴弧AC=弧AD,
∴∠F=∠ACD,
而∠CAH=∠FAC,
∴△ACH∽△AFC;
(2)解:AH•AF=AE•AB.理由如下:
连BF,如图.
∵AB为直径,
∴∠AFB=90°,
∴∠AFB=∠AEH=90°,
而∠EAH=∠FAB,
∴Rt△AEH∽Rt△AFB,
∴AE:AF=AH:AB,
即AH•AF=AE•AB;
(3)解:当AE=$\frac{1}{8}$AB时,S△AEC:S△BOD=1:4.理由如下:
∵S△ACE=$\frac{1}{2}$AE•CE,S△BOD=$\frac{1}{2}$DE•OB,S△AEC:S△BOD=1:4,
∴$\frac{1}{2}$DE•OB=4×$\frac{1}{2}$AE•CE,即DE•OB=4CE•AE,
∵直径AB⊥CD,
∴CE=DE,
∴OB=4AE,
∴AB=8AE,即AE=$\frac{1}{8}$AB.
故答案为$\frac{1}{8}$.
点评 本题考查了圆的综合题:垂直于弦的直径平分弦,并且平分弦所对的弧;在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角;有两组角对应相等的三角形相似;运用三角形相似的知识证明等积式是常用的方法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com