精英家教网 > 初中数学 > 题目详情
正方形ABCD中,E为AB上一点,F为CB延长线上一点,且∠EFB=45°.
(1)求证:AF=CE;
(2)你认为AF与CE有怎样的位置关系?说明理由.
(1)证明:∵正方形ABCD,
∴AB=BC,∠ABC=90°,
∴∠EBF=90°,
∵∠EFB=45°,
∴∠EFB=∠FEB=45°,
∴EB=EF,
在△CBE和△ABF中,
BC=AB
EB=EF
∠EBC=∠FBA=90°

∴△CBE≌△ABF,
∴AF=CE.

(2)AF⊥CE,
证明如下:延长CE交AF于G,
由(1)得△CBE≌△ABF,
∴∠BEC=∠AFB,
又∵∠ABC=90°,
∴∠BEC+∠ECB=90°,
∴∠AFB+∠ECB=90°,
又∵∠AFB+∠ECB+∠CGF=180°,
∴∠CGF=90°,
∴AF⊥CE.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a.
求:(1)梯形ADGF的面积;
(2)三角形AEF的面积;
(3)三角形AFC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)已知:如图1,在正方形ABCD中,E是BC的中点,F为DC上一点,且∠1=∠2,求证:AF=BC+FC;
(2)已知:如图2,把三角尺的直角顶点落在矩形ABCD的对角线交点P处,若旋转三角尺时,它的两条直角边与矩形的两边BC、CD分别相交于M、N,试证:MN2=BM2+DN2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,作PE⊥PB交直线CD于点E,设PA=x,S△PCE=y,
(1)求证:DF=EF;
(2)当点P在线段AO上时,求y关于x的函数关系式及自变量x的取值范围;
(3)在点P的运动过程中,△PEC能否为等腰三角形?如果能够,请直接写出PA的长;如果不能,请简单说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,O为正方形ABCD的对角线AC与BD的交点,M、N两点分别在BC与AB上,且OM⊥ON.
(1)试说明OM=ON;
(2)试判断CN与DM的关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以正方形ABCD的DC边为一边向外作一个等边三角形.
①求证:△ABE是等腰三角形;
②求∠BAE的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD为正方形,DEAC,AE=AC,AE与CD相交于F.
求证:CE=CF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知正方形ABCD的边长为8cm,点E、F分别在边BC、CD上,∠EAF=45°.当EF=8cm时,△AEF的面积是______cm2;当EF=7cm时,△EFC的面积是______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,正方形ABCD的面积为1,AE=EB,DH=2AH,CG=3DG,BF=4FC,求四边形EFGH的面积.

查看答案和解析>>

同步练习册答案