精英家教网 > 初中数学 > 题目详情
1.下列命题:(1)如果AC=BC,那么点C是线段AB的中点;(2)不相等的两个角一定不是对顶角;(3)直角三角形的两个锐角互余;(4)同位角相等;(5)两点之间直线最短.其中真命题的个数有(  )
A.1个B.2个C.3个D.4个

分析 由等腰三角形的判定、对顶角的性质、直角三角形的性质、平行线的性质、线段的性质对各选项分别判断即可.

解答 解:(1)如果AC=BC,那么点C不一定是线段AB的中点;故(1)是假命题;
(2)不相等的两个角一定不是对顶角;故(2)是真命题;
(3)直角三角形的两个锐角互余;故(3)是真命题;
(4)两直线平行,同位角相等;故(4)是假命题;
(5)两点之间线段最短;故(5)是假命题;
真命题的个数有2个;故选:B.

点评 本题考查了命题与定理、等腰三角形的判定、对顶角相等的性质、直角三角形的性质、平行线的性质、相等的性质等知识;难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).
(1)请画出将△ABC先向左,再向下都平移5个单位长度后得到的△A1B1C1
(2)请画出将△ABC绕O按逆时针方向旋转90°后得到的△A2B2C2
(3)在x轴上求作一点P,使△PAB周长最小,请画出△PAB,并直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.

(1)如图1,若AB=AC,∠BAD=30°,AD=6$\sqrt{3}$,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;
(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP
(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算题
(1)(-17)+59+(-37)
(2)$\frac{5}{6}$+(-2$\frac{1}{2}$)-(-1$\frac{1}{6}$)-(+0.5)
(3)-(+0.5)-(-3$\frac{1}{4}$)+2.75-(+7$\frac{1}{2}$)
(4)3.75-(-$\frac{1}{2}$)+(-4$\frac{2}{3}$)+(0.5)+(-6$\frac{3}{4}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,OB平分∠AOD,OC平分∠BOD,∠AOC=45°,则∠BOC=(  )
A.B.10°C.15°D.20°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列函数关系式:(1)y=-x; (2)y=2x+11;  (3)y=x2; (4)$y=\frac{1}{x}$,其中一次函数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为(  )
A.5 cmB.10 cmC.20 cmD.40 cm

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列给出4个命题:
①内错角相等;
②对顶角相等;
③对于任意实数x,代数式x2-6x+10总是正数;
④若三条线段a、b、c满足a+b>c,则三条线段a、b、c一定能组成三角形.
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11. 如图OA⊥OB,若∠BOC=40°,则∠AOC的度数是(  )
A.20°B.40°C.50°D.60°

查看答案和解析>>

同步练习册答案