精英家教网 > 初中数学 > 题目详情
13、把某不等式组的解集表示在数轴上,如图所示,则这个不等式组的解集是
-1≤x<4
分析:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从4出发向左画出的折线且表示4的点是空心圆,表示x<4,所以这个不等式组的解集为-1≤x<4.
解答:解:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;
从4出发向左画出的折线且表示4的点是空心圆,表示x<4,所以这个不等式组的解集为-1≤x<4.
故答案为-1≤x<4.
点评:不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2007•东城区二模)阅读理解下列例题:
例题:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式时,应把它转化成一元一次不等式组求解.
解:把二次三项式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“两实数相乘,同号得正,异号得负”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式组无解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.某车行驶在一个限速为40千米/时的弯道上,突然发现异常,马上刹车,但是还是与前面的车发生了追尾,事故后现场测得此车的刹车距离略超过10米,我们知道此款车型的刹车距离S(米)与车速x(千米/时)满足函数关系:S=ax2+bx,且刹车距离S(米)与车速x(千米/时)的对应值表如下:
车速x(千米/时) 30 50 70
刹车距离S(米) 6 15 28
问该车是否超速行驶?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读理解下列例题:
例题:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式时,应把它转化成一元一次不等式组求解.
解:把二次三项式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“两实数相乘,同号得正,异号得负”,得数学公式 ①或 数学公式
由①,得不等式组无解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.某车行驶在一个限速为40千米/时的弯道上,突然发现异常,马上刹车,但是还是与前面的车发生了追尾,事故后现场测得此车的刹车距离略超过10米,我们知道此款车型的刹车距离S(米)与车速x(千米/时)满足函数关系:S=ax2+bx,且刹车距离S(米)与车速x(千米/时)的对应值表如下:
车速x(千米/时)305070
刹车距离S(米)61528
问该车是否超速行驶?

查看答案和解析>>

科目:初中数学 来源:东城区二模 题型:解答题

阅读理解下列例题:
例题:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式时,应把它转化成一元一次不等式组求解.
把二次三项式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“两实数相乘,同号得正,异号得负”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式组无解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.某车行驶在一个限速为40千米/时的弯道上,突然发现异常,马上刹车,但是还是与前面的车发生了追尾,事故后现场测得此车的刹车距离略超过10米,我们知道此款车型的刹车距离S(米)与车速x(千米/时)满足函数关系:S=ax2+bx,且刹车距离S(米)与车速x(千米/时)的对应值表如下:
车速x(千米/时) 30 50 70
刹车距离S(米) 6 15 28
问该车是否超速行驶?

查看答案和解析>>

科目:初中数学 来源:2007年北京市东城区中考数学二模试卷(解析版) 题型:解答题

阅读理解下列例题:
例题:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式时,应把它转化成一元一次不等式组求解.
解:把二次三项式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“两实数相乘,同号得正,异号得负”,得 ①或  ②
由①,得不等式组无解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.某车行驶在一个限速为40千米/时的弯道上,突然发现异常,马上刹车,但是还是与前面的车发生了追尾,事故后现场测得此车的刹车距离略超过10米,我们知道此款车型的刹车距离S(米)与车速x(千米/时)满足函数关系:S=ax2+bx,且刹车距离S(米)与车速x(千米/时)的对应值表如下:
车速x(千米/时)305070
刹车距离S(米)61528
问该车是否超速行驶?

查看答案和解析>>

同步练习册答案