精英家教网 > 初中数学 > 题目详情
有一次函数y1=kx+m和二次函数y2=ax2+bx+c的大致图象如图,请根据图中信息回答问题(在横线上直接写上答案)
(1)不等式ax2+bx+c<0的解集是______;kx+m>ax2+bx+c的解集是______.
(2)当x=______时,y1=y2
(3)要使y2随x的增大而增大,x的取值范围应是______.

【答案】分析:(1)由二次函数y2=ax2+bx+c与x轴的交点坐标为2、6;一次函数y1=kx+m和二次函数y2=ax2+bx+c交点的横坐标为1、8;即可得出;
(2)由一次函数y1=kx+m和二次函数y2=ax2+bx+c交点的横坐标为1、8,解答出即可;
(3)二次函数y2=ax2+bx+c的对称轴为x=4,结合图形,即可得出;
解答:解:(1)如图,
∵二次函数y2=ax2+bx+c与x轴的交点坐标为2、6,
∴不等式ax2+bx+c<0的解集是:2<x<6;
∵一次函数y1=kx+m和二次函数y2=ax2+bx+c交点的横坐标为1、8,
∴kx+m>ax2+bx+c的解集是:1<x<8;

(2)∵一次函数y1=kx+m和二次函数y2=ax2+bx+c交点的横坐标为1、8,
∴当x=1或8时,y1=y2

(3)∵二次函数y2=ax2+bx+c的对称轴为x=4,
∴当x>4时,y2随x的增大而增大.
故答案为:(1)2<x<6;1<x<8;(2)1或8;(3)x>4.
点评:本题主要考查了一次函数和二次函数的图象与性质,体现了初中数学中的重要思想--数形结合思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知一次函数y1=kx+m和二次函数y2=ax2+bx+c的图象如图所示,它们有两个交点A(1,1),B(6,5),那么能够使得y1>y2的自变量x的取值范围是
1<x<6

查看答案和解析>>

科目:初中数学 来源: 题型:

20、有一次函数y1=kx+m和二次函数y2=ax2+bx+c的大致图象如图,请根据图中信息回答问题(在横线上直接写上答案)
(1)不等式ax2+bx+c<0的解集是
2<x<6
;kx+m>ax2+bx+c的解集是
1<x<8

(2)当x=
1或8
时,y1=y2
(3)要使y2随x的增大而增大,x的取值范围应是
x>4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+1(k≠0)与反比例函数y2=
mx
(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?
(3)当y1>y2时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

有一次函数y1=kx+m和二次函数y2=ax2+bx+c的大致图象如图,请根据图中信息回答问题(在横线上直接写上答案)
(1)不等式ax2+bx+c<0的解集是______;kx+m>ax2+bx+c的解集是______.
(2)当x=______时,y1=y2
(3)要使y2随x的增大而增大,x的取值范围应是______.

查看答案和解析>>

同步练习册答案