27、我们约定,若一个三角形(记为△A
1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A
1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A
1,又由△A
1复制出△A
2,再由△A
2复制出△A
3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到
1
次平移,
2
次旋转.小明发现△B∽△A,其相似比为
2:1
.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有
121
个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是
正三边形、正六边形
;
(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.