精英家教网 > 初中数学 > 题目详情
观察下面图形,解答下列问题:
精英家教网
(1)在上面第四个图中画出六边形的所有对角线;
(2)观察规律,把下表填写完整:
边数 n
对角线条数 0 2 5
(3)若一个多边形的内角和为1440°,求这个多边形的边数和对角线的条数.
分析:(1)连接任意两个不相邻的两个顶点即可得到所求的对角线;
(2)过n边形的一个顶点可画出(n-3)条对角线,那么过n个顶点可以画出n(n-3)条对角线,根据两点确定一条直线,再把所得结果除以2即可求得多边形的对角线的总条数;
(3)根据内角和公式可得多边形的边数,把边数代入(2)得到的公式即可求得相应的对角线条数.
解答:解:(1)精英家教网
(2)
边数 n
对角线条数 0 2 5 9 14  
n(n-3)
2
(3)设多边形的边数为n.
则(n-2)×180=1440,
解得n=10.
∴对角线的条数为:
10×(10-3)
2
=35(条).
点评:主要考查三角形的内角和公式及n边形对角线的条数的规律.根据一个顶点处的对角线条数得到n边形对角线的条数的相应规律是解决本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图①、②、③、④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.
(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:

(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;
(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.

查看答案和解析>>

科目:初中数学 来源: 题型:

按如图所示的规律用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,并解答下面问题:

(1)将下表填写完整
图形编号 (1) (2) (3) (4)   …
黑色瓷砖的块数 10 14 18
22
22
  …
白色瓷砖的块数 2 6 12
20
20
  …
(2)第(n)个图形中,共有黑色瓷砖
4n+6
4n+6
块,共有白色瓷砖
n(n+1)
n(n+1)
块;(用含n的代数式表示,答案直接写在题中横线上);
(3)如果每块黑色瓷砖12元每块白瓷砖10元,求购买铺设第(8)个图形所需瓷砖的费用;
(4)是否存在第(n)个图形,该图形所需白、黑瓷砖的总数为18325块?若存在,求出该图形的编号n;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①、②、③、④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.

(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:

(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;
(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

按如图所示的规律用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,并解答下面问题:
作业宝
(1)将下表填写完整

图形编号(1)(2)(3)(4)  …
黑色瓷砖的块数101418______  …
白色瓷砖的块数2612______  …

(2)第(n)个图形中,共有黑色瓷砖______块,共有白色瓷砖______块;(用含n的代数式表示,答案直接写在题中横线上);
(3)如果每块黑色瓷砖12元每块白瓷砖10元,求购买铺设第(8)个图形所需瓷砖的费用;
(4)是否存在第(n)个图形,该图形所需白、黑瓷砖的总数为18325块?若存在,求出该图形的编号n;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案