精英家教网 > 初中数学 > 题目详情
5.公交公司的某路公交车每月运营总支出的费用为4000元,乘客乘车的票价为2元/人次.设每月的乘客量为x(人次),每月的赢利额为y(元).(赢利额=总收入-总支出)
(1)y(元)与x(人次)之间的关系式为y=2x-4000;(x为正整数)
(2)根据关系式填表:
x/人次50010001500200025003000
y/元-3000-2000-1000010002000
(3)根据表格数据,当月乘客量超过2000人次时,该路公交车运营才能赢利.

分析 (1)根据票价乘以乘车人数,可得收入,根据收入减支出,可得答案;
(2)根据函数关系式即可填表;
(3)根据收入大于支出,可得答案.

解答 解:(1)函数关系式为y=2x-4000,
(2)

x人50010001500200025003000
y元-3000-2000-1000010002000
(3)当每月乘客量达到2000人以上时,收入大于支出,该公交车才不会亏损.
故答案为y=2x-4000;-3000;-2000;-1000;0;1000;2000;2000

点评 本题考查了函数关系式,利用票价乘以乘车人数得出收入,利用收入减支出得出函数关系式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.问题背景:如图(1),在△ABC中,已知AB=AC,BE=CF.
(1)发现问题:小华审题后发现,若连接CE,BF,则CE=BF,请说明理由;
(2)提出问题:如图(2),设CE与BF交于点O,则直线AO是BC边的垂直平分线吗?试说明理由;
(3)解决问题:在图(3)中,是各边相等,各内角也相等的正五边形ABCDE,请你只用无刻度的直尺画出图中BC边的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列各式成立的是(  )
A.$\sqrt{{{({-2})}^2}}=-2$B.$\sqrt{{{({-3})}^2}}=9$C.$\sqrt{x^2}=x$D.$\sqrt{{{({-5})}^2}}=5$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足(a-2b)2+|b-2|=0.
(1)则C点的坐标为(2,0);A点的坐标为(0,4).
(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ?若存在,请求出t的值;若不存在,请说明理由;
(3)点F是线段AC上一点,满足∠FOC=∠FCO,∠OEC=∠CAO+∠ACE,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,$\frac{∠OHC+∠ACE}{∠OEC}$的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB是半圆O的直径,射线AM⊥AB,点P在AM上,连接OP交半圆O于点D,PC切半圆O于点C,连接BC,OC.
(1)求证:△OAP≌△OCP;
(2)若半圆O的半径等于2,填空:
①当AP=2时,四边形OAPC是正方形;
②当AP=2$\sqrt{3}$时,四边形BODC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.问题探究:
(1)如图1,点A是线段BC外一动点,若AB=a,BC=b,求线段AC长的最大值(用含a,b的式子表示);
(2)如图2,点A是线段BC外一动点,且AB=1,BC=4,分别以AB、AC为边作等边△ABD、等边△ACE,连接CD、BE.
①求证:CD=BE;
②求线段BE长的最大值;
问题解决:
(3)如图3,在平面直角坐标系中,已知点A(2,0)、B(5,0),点P、M是线段AB外的两个动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.不等式-$\frac{1}{2}$x+1>0的正整数解是1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,已知AB=DC,下列所给的条件不能证明△ABC≌△DCB的是(  )
A.∠A=∠D=90°B.∠ABC=∠DCBC.∠ACB=∠DBCD.AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.

查看答案和解析>>

同步练习册答案