精英家教网 > 初中数学 > 题目详情
如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);在第二象限内的格点上找点C(C点的横坐标大于-3),使点C与线段AB组成一个以AB为底的等腰三角形,则C点坐标是
(-2,2)或(-1,1)
(-2,2)或(-1,1)
分析:(1)由直角坐标系性质可直接作出图;
(2)在线段AB的垂直平分线上,且经过格点的点为C点.由图可知,该点有两点.
解答:解:(1)依题意作出直角坐标系如图:

(2)以AB为底的等腰三角形的顶点C在线段AB的垂直平分线上,且经过格点的点有两点(-2,2)或(-1,1).
故答案是:(-2,2)或(-1,1).
点评:本题考查了等腰三角形的判定、坐标和图形性质的相关知识,难度中等.注意“数形结合”数学思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是
 
,△ABC的周长是
 
(结果保留根号);
(3)画出△ABC以点C为旋转中心,旋转180°后的△A′B′C,连接AB′和A′B,试说出四边形ABA′B′是何特殊四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是规格为8×8的正方形网格(网格小正方形的边长为1),请在所给网格中按下列要求精英家教网操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,3),B点坐标为(-4,1);
(2)在第二象限内的格点上画一点C,使点C与线段AB围成一个直角三角形(不是等腰直角三角形),则C点坐标是
 
,△ABC的面积是
 

(3)将(2)中画出△ABC以点C为旋转中心,逆时针旋转90°后得△A′B′C.求经过B、C、B′三点的抛物线的解析式;并判断抛物线是否经过8×8正方形网格的格点(不包括点B、C、B′),若经过,请你直接写出点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)按(1)中的直角坐标系在第二象限内的格点上找点C(C点的横坐标大于-3),使点C与线段AB组成一个以AB为底的等腰三角形,则C点坐标是
 
,△ABC的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安庆二模)如图是规格为10×10的正方形网格,请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使点A、B的坐标分别为(1,-2)、(2,-1);
(2)以坐标原点O为位似中心,在第二象限内将线段AB放大到原来的2倍得到线段A1B1
(3)在第二象限内的格点(横、纵坐标均为整数的点叫做格点)上画一点C1,使点C1与线段A1B1组成一个以A1B1为底边的等腰三角形,且腰长是无理数.此时,点C1的坐标是
(-1,1)
(-1,1)
,△A1B1C1的周长是
2
2
+2
10
2
2
+2
10
(写出一种符合要求的情况即可,结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是规格为8×8的正方形网格,请在网格中按下列要求操作:
(1)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,并求出腰长;
(2)画出△ABC绕点C旋转180°后得到的△A′B′C;连接AB′和A′B,试说明四边形ABA′B′是矩形.精英家教网

查看答案和解析>>

同步练习册答案