【题目】如图,抛物线的对称轴是,且过点,有下列结论:①;②;③;④;⑤.其中正确的结论是______.(填序号)
【答案】①③⑤
【解析】
①由图像知; 由抛物线对称抽是得,所以,;进而得;
②有图像知,抛物线过,代入抛物线解析式可得;
③由于可变形为, 而x轴上(,0)关于对称的点是(,0),所以正确;
④因为抛物线与x轴有两个不同的交点,所以;
⑤当时,抛物线取得最大值,当时,则,整理可得.
解:①由图像知; 由抛物线对称抽是得,所以,;进而得;故①正确;
②有图像知,抛物线过,代入抛物线解析式整理可得,故②错误;
③由于可变形为, 而在x轴上(,0)关于对称的点是(,0),故③正确;
④由图像可知,抛物线与x轴有两个不同的交点,所以,故④错误;
⑤当时,抛物线取得最大值,当时,则,整理可得.故⑤正确.
故答案为:①③⑤.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,矩形CDEF的顶点E在边AB上,D,F两点分别在边AC,BC上,且,将矩形CDEF以每秒1个单位长度的速度沿射线CB方向匀速运动,当点C与点B重合时停止运动,设运动时间为t秒,矩形CDEF与△ABC重叠部分的面积为S,则反映S与t的函数关系的图象为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示为3月22日至27日间,我区每日最高气温与最低气温的变化情况.
(1)最低气温的中位数是 ℃;3月24日的温差是 ℃;
(2)分别求出3月22日至27日间的最高气温的平均数、最低气温的平均数;
(3)经过计算,最高气温和最低气温的方差分别为6.33、5.67,数据更稳定的是最高气温还是最低气温?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着技术的发展,人们对各类产品的使用充满期待.某公司计划在某地区销售第一款产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第(为正整数)个销售周期每台的销售价格为元,与之间满足如图所示的一次函数关系.
(1)求与之间的关系式;
(2)设该产品在第个销售周期的销售数量为(万台),与的关系可用来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,是边上的动点(与点、不重合),且,于点,与的延长线交于点,连接、.
(1)求证:①;②;
(2)若,在点运动过程中,探究:
①线段的长度是否改变?若不变,求出这个定值;若改变,请说明理由;
②当为何值时,为等腰直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形内接于,对角线是的直径,过点作的垂线交的延长线于点,为的中点,连接,,与交于点.
(1)求证:是的切线;
(2)若,求的值;
(3)若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,,,,是射线上一点,连接,沿将三角形折叠,得三角形.
(1)当时,=_______度;
(2)如图,当时,求线段的长度;
(3)当点落在平行四边形的边上时,直接写出线段的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D,点E在⊙O上,连接CE与⊙O交于点F.
(1)若BC=20,求的长度;
(2)若EF=AB,求∠OCE的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com