精英家教网 > 初中数学 > 题目详情
12.给出下列5个命题:①相等的角是对顶角;②互补的两个角中一定是一个为锐角,另一个为钝角;③平行于同一条直线的两条直线平行;④同旁内角的平分线互相垂直.其中真命题的个数为(  )
A.1B.2C.3D.4

分析 根据对顶角、互补、同旁内角的定义即可判断①②④错误,根据平行公理可知③正确,由此即可解决问题.

解答 解:①错误,相等的角不一定是对顶角.
②错误,两个角可能都是90°.
③正确.
④错误,同旁内角的平分线不一定互相垂直.
正确的是③.
故选A.

点评 本题考查命题与定理、对顶角、互补、同旁内角等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.$\sqrt{81}$的平方根是(  )
A.81B.±3C.-3D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图是二次函数y=ax2+bx+c(a≠0)的图象,有下列判断:①b2>4ac,②2a+b=0,③3a+c>0,④4a-2b+c<0;⑤9a+3b+c<0.其中正确的是(  )
A.①②③B.②③④C.①②⑤D.③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列运算正确的是(  )
A.($\frac{1}{2}$)-1=-$\frac{1}{2}$B.5÷(-2)×$\frac{1}{2}$=5÷(-1)=-5
C.(2a+b)2=4a2+4ab+b2D.a2•(ab)3=a4b2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,△ABC为等边三角形,△ADE是△ABC的位似图形,位似比为k:1,点D在AB上,点E在AC上.

(1)证明:DE∥BC;
(2)将△ADE绕点A旋转α至△AMN的位置.
①如图2,当AM⊥BC时,请你判断AC与MN的位置关系,并说明理由;
②若四边形AMCN为菱形,如图3,求旋转角α及k的值;
③如图4,当直线MN过点B时,求k与旋转角α(0°<α<60°)之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知反比例函数的两支图象关于原点对称,利用这一结论解决下列问题:如图,在同一直角坐标系中,正比例函数y=kx的图象与反比例函数y=$\frac{\sqrt{3}}{x}$的图象分别交于第一、三象限的点B,D,已知点A(-m,O)、C(m,0).
(1)填空:无论k取何值时,四边形ABCD的形状一定是平行四边形;
(2)①当点B为(p,1)时,四边形ABCD是矩形,试求p,k,和m的值;
②填空:对①中的m值,能使四边形ABCD为矩形的点B共有2个.
(3)四边形ABCD能不能是菱形?若能,直接写出B点的坐标;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8$\sqrt{2}$cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以$\sqrt{2}$cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2
(1)当点M落在AB上时,x=4;
(2)当点M落在AD上时,x=$\frac{16}{3}$;
(3)求y关于x的函数解析式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.一次函数y=ax+3,与y=bx-1的图象如图所示,其交点B(-3,m),则不等式ax+3>bx-1的解集表示在数轴上正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)-$\frac{4}{3}$$\sqrt{18}$÷(2$\sqrt{8}$×$\frac{1}{3}\sqrt{54}$)+($\sqrt{{5}^{2}+1{2}^{2}}$)0
(2)($\sqrt{5}$-$\sqrt{3}$+$\sqrt{2}$)($\sqrt{5}$-$\sqrt{3}$-$\sqrt{2}$).

查看答案和解析>>

同步练习册答案