精英家教网 > 初中数学 > 题目详情
(2007•桂林)已知:如图,△ABC关于y轴对称,点B、P关于y轴的对称点分别是点C、Q.BP=AP=2,且P点坐标为(-1,0).
(1)分别写出Q点和C点的坐标,并指出△ABP关于y轴的对称三角形;
(2)M为线段CQ上一点,若以x轴为旋转轴,旋转△PAM一周形成的旋转体的全面积为5π,求线段AM的长;
(3)N为线段AM上一动点(与点A、M不重合),过点N分别作NH⊥x轴于H,NG⊥y轴于G.求当矩形OHNG的面积最大时N点的坐标.

【答案】分析:(1)P,Q关于y轴对称,那么Q的坐标应该是(1,0),BP=2,那么CQ=2,因此C的坐标是(3,0),由于B,P关于y轴的对称点分别是C,Q,那么三角形ABP关于y轴的对称三角形就应该是ACQ;
(2)旋转一周得出的图形应该是两个圆锥的组合体,也就是以OA为底面圆半径,AM和AP为母线长的两个圆锥.那么关键是求出OA的长,可在直角三角形AOM中,根据AP,OP的长,求出OA的值,然后根据圆锥体全面积的计算方法表示出圆锥的全面积(这里不应该算底面圆),进而得出AM的值;
(3)求矩形的面积关键是求N点的坐标,那么就必须先求出AM所在直线的解析式,根据直线过A点,我们可将直线设成y=kx+,然后根据直线过M点,而OM可以在直角三角形AMO中求出,也就能得出M的坐标,然后用待定系数法求出函数的解析式,这样,可根据矩形的面积公式,以N的横坐标的绝对值当矩形的宽,以N的纵坐标的绝对值当矩形的长,以此可得出关于矩形的面积与横坐标的函数关系式,然后根据函数的性质判定出x为什么值时,矩形的面积最大,然后将x的值代入AM所在直线的解析式中得出N点的坐标.
解答:解:(1)Q点坐标为(1,0);C点坐标为(3,0);△ABP与△ACQ关于y轴对称;

(2)在Rt△AOP中,∵AP=2,PO=1,AO==,依题意有:
×2π×2+×2π×AM=5π,∴AM=3;

(3)在Rt△AOM中,∵AO=,AM=3,
∴OM==
∴点M的坐标为(,0),设直线AM的解析式为:y=kx+
∵直线AM经过点M(,0),k+=0,k=-
∴直线AM的解析式为:y=-x+.设点N的坐标为(x,y),
则S矩形AGOH=xy=x(-x+)=-x2+x=-(x-2+
∴当x=时,矩形NGOH的面积取得最大值,
此时y=-x+=
∴点N的坐标为().
点评:本题主要考查了对称的性质,一次函数及二次函数的实际应用等知识点,根据对称得出各边的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的对称》(04)(解析版) 题型:解答题

(2007•桂林)已知:如图,△ABC关于y轴对称,点B、P关于y轴的对称点分别是点C、Q.BP=AP=2,且P点坐标为(-1,0).
(1)分别写出Q点和C点的坐标,并指出△ABP关于y轴的对称三角形;
(2)M为线段CQ上一点,若以x轴为旋转轴,旋转△PAM一周形成的旋转体的全面积为5π,求线段AM的长;
(3)N为线段AM上一动点(与点A、M不重合),过点N分别作NH⊥x轴于H,NG⊥y轴于G.求当矩形OHNG的面积最大时N点的坐标.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2007•桂林)已知:如图,△ABC关于y轴对称,点B、P关于y轴的对称点分别是点C、Q.BP=AP=2,且P点坐标为(-1,0).
(1)分别写出Q点和C点的坐标,并指出△ABP关于y轴的对称三角形;
(2)M为线段CQ上一点,若以x轴为旋转轴,旋转△PAM一周形成的旋转体的全面积为5π,求线段AM的长;
(3)N为线段AM上一动点(与点A、M不重合),过点N分别作NH⊥x轴于H,NG⊥y轴于G.求当矩形OHNG的面积最大时N点的坐标.

查看答案和解析>>

科目:初中数学 来源:2007年广西桂林市中考数学试卷(解析版) 题型:解答题

(2007•桂林)已知:如图,△ABC关于y轴对称,点B、P关于y轴的对称点分别是点C、Q.BP=AP=2,且P点坐标为(-1,0).
(1)分别写出Q点和C点的坐标,并指出△ABP关于y轴的对称三角形;
(2)M为线段CQ上一点,若以x轴为旋转轴,旋转△PAM一周形成的旋转体的全面积为5π,求线段AM的长;
(3)N为线段AM上一动点(与点A、M不重合),过点N分别作NH⊥x轴于H,NG⊥y轴于G.求当矩形OHNG的面积最大时N点的坐标.

查看答案和解析>>

科目:初中数学 来源:2007年广西桂林市中考数学试卷(解析版) 题型:解答题

(2007•桂林)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.
(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y元,选择乙施工队所收的费用为Y元.请分别写出Y、Y、关于X的函数关系式;
(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?
(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?

查看答案和解析>>

同步练习册答案