(1)证明:∵∠BDE=180°-∠DEB-∠B,∠CEA=180°-∠DEB-∠AED,
又∠B=∠AED,
∴∠BDE=∠CEA,
∵AB=AC,
∴∠B=∠C,
∴△BDE∽△CEA;
(2)解:∵△BDE∽△CEA,
∴
,
即
,
∴
=
(0<x<8),
∴当x=4,y有最小值是
;
(3)解:∵∠ADE是△BDE的外角,
∴∠ADE>∠B,
∵∠B=∠AED,
∴∠ADE>∠AED,
∴AE≠AD.
①当AE=DE时,
得△BDE≌△CEA,
∴BE=AC=6cm;
②当DA=DE时,∠BAE=∠AED=∠C,
又∵∠B=∠B,
∴△BAE∽△BCA,
∴
,
即:
,
∴
,
∴△ADE为等腰三角形时,
.
分析:(1)根据∠BDE=∠CEA,∠B=∠C证得结论;
(2)利用(1)中相似三角形的对应边成比例列出比例式
,则把相关线段的长度代入即可列出y与x的关系式.注意自变量x的取值范围要注明;
(3)根据三角形外角性质和三角形的边角关系知AE≠AD.所以当△ADE是等腰三角形时,分两种情况:①当AE=DE时,△BDE≌△CEA;②当DA=DE时,△BAE∽△BCA.所以根据全等三角形和相似三角形的性质来求线段BE的长度.
点评:本题考查了相似三角形的判定与性质、三角形外角的性质,二次函数的最值等知识点.解答(3)题时,要分类讨论,以防漏解.