精英家教网 > 初中数学 > 题目详情
18.如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;

(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)如图3,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?(直接写出结果即可)

分析 (1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案;
(3)易证∠PFA=∠QGA,∠PAF=∠AQG,只需PA=QA,就可得到△PFA与△QAG全等,然后只需根据点P和点Q不同位置进行分类讨论即可解决问题.

解答 证明:(1)∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
$\left\{\begin{array}{l}{∠ABD=∠CAE}\\{∠BDA=∠CEA}\\{AB=AC}\end{array}\right.$,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
$\left\{\begin{array}{l}{∠ABD=∠CAE}\\{∠BDA=∠CEA}\\{AB=AC}\end{array}\right.$,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.
(3)①当0≤t<$\frac{28}{3}$时,点P在AB上,点Q在AC上,
此时有BF=2t,CG=3t,AB=22,AC=28.
当PA=QA即22-2t=28-3t,也即t=6时,
∵PF⊥l,QG⊥l,∠BAC=90°,
∴∠PFA=∠QGA=∠BAC=90°.
∴∠PAF=90°-∠GAQ=∠AQG.
在△PFA和△QAG中,
$\left\{\begin{array}{l}{∠PFA=∠QGA}\\{∠PAF=∠AQG}\\{PA=QA}\end{array}\right.$,
∴PFA与≌QAG(AAS).
②当$\frac{28}{3}$≤t<11时,点P在AB上,点Q也在AB上,
此时相当于两点相遇,则有2t+3t=50,解得t=10;
③当7<t<18时,点Q停在点B处,点P在AC上,
当PA=QA即2t-22=22,解得t=22(舍去).
综上所述:当t等于6或10时,△PFA与△QAG全等.

点评 本题考查了全等三角形的判定与性质以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.某商场经理接到的采购部和销售部的两个电话,根据电话内容完成下列问题:
(1)写出该商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式,并指出自变量x的取值范围.
(2)当销售价为多少元时,每天的销售利润最大?最大利润为多少?
采购部经理,这里有一批商品以每件42元购回
销售部经理,以每件42元购回的商品,每天的销售量t(件)与每件的销售价x(元)呈现的关系是:t=-3x+204

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下面四个图形中是轴对称图形的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图所示,有一抛物线形门洞,地面宽度为8m,有一宽6m,高4m的车刚好能通过这个门洞,求这个门洞的高度.(精确到0.01m)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,小明要在一幅长90厘米、宽40厘米的风景画的四周外围镶上一个宽度相同的边框,制成一挂图,使风景画的面积为整个挂图面积的54%.设边框的宽度为x厘米,根据题意所列方程是(90+2x)(40+2x)×54%=90×40.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,已知∠3=∠4,要得到AB∥CD,需要添加的条件是(  )
A.∠1=∠4B.∠3=∠2C.∠1=∠2D.∠1与∠2互补

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,已知点A(8,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=6时,这两个二次函数的最大值之和等于(  )
A.5B.$\frac{{8\sqrt{5}}}{3}$C.10D.$2\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少销售10件玩具,设该种品牌玩具的销售单价为x元(x>40),销售量为y件,销售该种品牌玩具获得的利润为w元.
(1)请直接写出y与x,w与x的函数表达式;
(2)若商场获得了10000元的销售利润,求该种品牌玩具销售单价x应定为多少元?
(3)若玩具厂规定该种品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该种品牌玩具获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简,再求值.
(1)$(x-2-\frac{5}{x+2})÷\frac{x-3}{2x+4}$,其中x=$\sqrt{2}-3$
(2)(a+b)2+(a-b)(2a+b)-3a2,其中a=-2-,b=-2.

查看答案和解析>>

同步练习册答案