精英家教网 > 初中数学 > 题目详情
(2013•沙市区一模)如图,已知AB为⊙O的直径,PA与⊙O相切与点A,线段OP与弦AC垂直并相交于点D,OP与⊙O相交于点E,连接BC.
(1)求证:△PAD∽△ABC;
(2)若PA=10,AD=6,求AB和PE的长.
分析:(1)由PA为圆O的切线,利用切线的性质得到AP垂直于AB,可得出∠PAO为直角,得到∠PAD与∠DAO互余,再由AB为圆O的直径,根据直径所对的圆周角为直角,可得出∠ACB为直角,得到∠DAO与∠B互余,根据同角的余角相等可得出∠PAC=∠B,再由一对直角相等,利用两对对应角相等的两三角形相似可得出三角形APD与三角形ABC相似;
(2)在直角三角形APD中,利用勾股定理求出PD的长,进而确定出AC的长,由第一问两三角形相似得到的比例式,将各自的值代入求出AB的上,求出半径AO的长,在直角三角形APO中,由AP及AO的长,利用勾股定理求出OP的长,用OP-OE即可求出PE的长.
解答:(1)证明:∵PA是⊙O的切线,AB是直径,
∴∠PAO=90°,∠C=90°,
∴∠PAC+∠BAC=90°,∠B+∠BAC=90°,
∴∠PAC=∠B,
又∵OP⊥AC,
∴∠ADP=∠C=90°,
∴△PAD∽△ABC;

(2)解:∵∠PAO=90°,PA=10,AD=6,
∴PD=
PA2-AD2
=8,
∵OD⊥AC,
∴AD=DC=6,
∴AC=12,
∵△PAD∽△ABC,
AP
AB
=
PD
AC

10
AB
=
8
12

∴AB=15,
∴OE=
1
2
AB=
15
2

∵OP=
AO2+AP2
=
25
2

∴PE=OP-OE=
25
2
-
15
2
=5.
点评:此题考查了切线的性质,相似三角形的判定与性质,圆周角定理,勾股定理,垂径定理,熟练掌握性质及定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•沙市区一模)如图,Rt△ABC中,∠ACB=90°,AC=BC=2
2
,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为
8
2
π
8
2
π

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沙市区一模)两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB边上的E′点时,
EE′
的长度为
π
3
π
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沙市区一模)抛物线y=x2-6x+5的顶点坐标和对称轴分别为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沙市区一模)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2,如果x1+x2-x1x2<-1,且k为整数,则k的值为
-1或0
-1或0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沙市区一模)如图,已知点A的坐标为(
3
,3),AB⊥x轴,垂足为B,连接OA,反比例函数y=
k
x
(k>0)的图象与线段OA,AB分别交与点C,D.若AB=3BD,则四边形BOCD的面积为
2+
3
2
2+
3
2

查看答案和解析>>

同步练习册答案