精英家教网 > 初中数学 > 题目详情
已知:如图,在半径为8的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=2
15

(1)求证:
AM
EM
=
MC
MB

(2)求EM的长;
(3)求sin∠EOB的值.
分析:(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB,进而证明
AM
EM
=
MC
MB

(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;
(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.
解答:(1)证明:连接AC、EB,
∵∠A=∠BEC,∠B=∠ACE,
∴△AMC∽△EMB,
AM
EM
=
MC
MB


(2)解:∵DC是⊙O的直径,
∴∠DEC=90°,
∴DE2+EC2=DC2
∵DE=2
15
,CD=16,且EC为正数,
∴EC=14,
∵M为OB的中点,
∴BM=4,AM=12,
AM
EM
=
MC
MB

∴AM•BM=EM•CM=48,且EM>MC,
∴EM=8;

(3)解:过点E作EF⊥AB,垂足为点F,
∵OE=8,EM=8,
∴OE=EM,
∴OF=FM=2,
∴EF=
82-22
=2
15

∴sin∠EOB=
EF
OE
=
2
15
8
=
15
4
点评:本题主要考查了相似三角形的判定和性质、圆周角定理,锐角三角函数定义、勾股定理的知识点,本题关键根据已知条件和图形作好辅助线,结论就很容易求证了.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O精英家教网于点E,且EM>MC.连接DE,DE=
15

(1)求证:AM•MB=EM•MC;
(2)求EM的长;
(3)求sin∠EOB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在半径为4的⊙O中,圆心角∠AOB=90°,以半径OA、OB的中点C、F为顶点作矩形CDEF,顶点D、E在⊙O的劣弧
AB
上,OM⊥DE于点M.试求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E与点F分别在弦AB、AC精英家教网上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.
(1)求四边形AEOF的面积.
(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式,求x取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=
15

(1)求证:AM•MB=EM•MC;
(2)求sin∠EOB的值;
(3)若P是直径AB延长线上的点,且BP=12,求证:直线PE是⊙O的切线.

查看答案和解析>>

同步练习册答案