精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是(  )
A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF

∵EF垂直平分BC,
∴BE=EC,BF=CF,
∵BF=BE,
∴BE=EC=CF=BF,
∴四边形BECF是菱形;
当BC=AC时,
∵∠ACB=90°,
则∠A=45°时,菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,
∴∠EBC=45°
∴∠EBF=2∠EBC=2×45°=90°
∴菱形BECF是正方形.
故选项A正确,但不符合题意;
当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;
当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;
当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.
故选:D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

下列说法:
①一组对边平行且相等的四边形是平行四边形;
②对角线互相垂直且相等的四边形是正方形;
③顺次连结矩形四边中点得到的四边形是菱形;
④两条对角线相等的梯形是等腰梯形,
其中正确的共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

设E、F分别在正方形ABCD的边BC,CD上滑动保持且∠EAF=45°,AP⊥EF于点P.
(1)求证:AP=AB;
(2)若AB=5,求△ECF的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如果正方形的一边落在三角形的一边上,其余两个顶点分别在三角形的另外两条边上,则这样的正方形叫做三角形的内接正方形.
(1)如图①,在△ABC中,BC=a,BC边上的高AD=ha,EFGH是△ABC的内接正方形.设正方形EFGH的边长是x,求证:x=
aha
a+ha

(2)在Rt△ABC中,AB=4,AC=3,∠BAC=90度.请在图②,图③中分别画出可能的内接正方形,并根据计算回答哪个内接正方形的面积最大;
(3)在锐角△ABC中,BC=a,AC=b,AB=c,且a<b<c.请问这个三角形的内接正方形中哪个面积最大?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB?BC?CD?DA?AB连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一个直角三角形的直角顶点P在正方形ABCD的对角线AC所在的直线上滑动,并使得一条直角边始终经过B点.
(1)如图1,当直角三角形的另一条直角边和边CD交于Q点,
PB
PQ
=______;
(2)如图2,当另一条直角边和边CD的延长线相交于Q点时,
PB
PQ
=______;
(3)如图3或图4,当直角顶点P运动到AC或CA的延长线上时,请你在图3或图4中任选一种情形,求
PB
PQ
的值,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
6
.下列结论:
①△APD≌△AEB﹔②点B到直线AE的距离为
3
﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
2

其中正确结论的序号是(  )
A.①③④B.①②③C.②③④D.①②④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,以正方形ABCD的一边CD为边,向形外作等边三角形CDE,连接AC、AE,则下列结论错误的是(  )
A.∠ACE=105°
B.∠ADE=150°
C.∠DEA=15°
D.△EFC的面积大于△ACF的面积

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.
(1)若OF=4,求FG的长;
(2)求证:BF=OG+CF.

查看答案和解析>>

同步练习册答案