精英家教网 > 初中数学 > 题目详情
如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上),若⊙P过A、B、E三点(圆心在x轴上),抛物线经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1。
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;②若FQ=t,S△ACQ=s,直接写出s与t之间的函数关系式。
解:(1)如图甲,连接PE、PB,设PC=n,
∵正方形CDEF的面积为1,
∴CD=CF=1,
根据圆和正方形的对称性知:OP=PC=n,
∴BC=2PC=2n,
∵而PB=PE,
∴PB2=BC2+PC2=4n2+n2=5n2
PE2=PF2+EF2=(n+1)2+1,
∴5n2=(n+1)2+1,
解得:n=1(n=舍去),
∴BC=OC=2,
∴B点坐标为(2,2);
(2)如图甲,由(1)知A(0,2),C(2,0),
∵A,C在抛物线上,


∴抛物线的解析式为:

∴抛物线的对称轴为x=3,即EF所在直线,
∵C与G关于直线x=3对称,
∴CF=FG=1,
∴MF=FG=
在Rt△PEF与Rt△EMF中,


∴△PEF∽△EMF,
∴∠EPF=∠FEM,
∴∠PEM=∠PEF+∠FEM=∠PEF+∠EPF=90°,
∴ME是⊙P的切线;
(3)①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ,则有AQ=A′Q,
∴△ACQ周长的最小值为(AC+A′C)的长,
∵A与A′关于直线x=3对称,
∴A(0,2),A′(6,2),
∴A′C=
而AC=
∴△ACQ周长的最小值为
②当Q点在F点上方时,S=t+1,
当Q点在线段FN上时,S=1-t,
当Q点在N点下方时,S=t-1。

                         图乙
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=
14
x2+bx+c
经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2012届江苏省江阴市长泾片九年级下学期期中检测数学试卷(带解析) 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为轴、轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在轴上),抛物线经过A、C两点,与轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
【小题1】求B点坐标;
【小题2】求证:ME是⊙P的切线;
【小题3】设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;②若FQ=,△ACQ的面积 S△ACQ,直接写出之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省无锡市江阴市澄东片九年级(下)期中数学试卷(解析版) 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省无锡市江阴市中考数学模拟试卷(4月份)(解析版) 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2011年湖北省荆州市中考数学试卷(解析版) 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.

查看答案和解析>>

同步练习册答案