精英家教网 > 初中数学 > 题目详情
某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个)

30
40
50
60

销售量y(万个)

5
4
3
2

同时,销售过程中的其他开支(不含造价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?
解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,
,解得:
∴函数解析式为:y=x+8。
(2)根据题意得:
z=(x﹣20)y﹣40=(x﹣20)(x+8)﹣40=x2+10x﹣200=(x2﹣100x)﹣200
= [(x﹣50)2﹣2500]﹣200=(x﹣50)2+50,
<0,∴x=50,z最大=50。
∴该公司销售这种计算器的净得利润z与销售价格x)的函数解析式为z=x2+10x﹣200,销售价格定为50元/个时净得利润最大,最大值是50万元。
(3)当公司要求净得利润为40万元时,即(x﹣50)2+50=40,解得:x1=40,x2=60。
作函数图象的草图,

通过观察函数y=(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.
而y与x的函数关系式为:y=x+8,y随x的增大而减少,
∴若还需考虑销售量尽可能大,销售价格应定为40元/个。

试题分析:(1)根据数据得出y与x是一次函数关系,进而利用待定系数法求一次函数解析式。
(2)根据z=(x﹣20)y﹣40得出z与x的函数关系式,应用二次函数最值原理求解即可。
(3)首先求出40=(x﹣50)2+50时x的值,从而二次函数的性质根据得出x(元/个)的取值范围,结合一次函数的性质即可求得结果。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是(     )
 
A.二次函数图像与x轴交点有两个
B.x≥2时y随x的增大而增大
C.二次函数图像与x轴交点横坐标一个在-1~0之间,另一个在2~3之间
D.对称轴为直线x=1.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图(a),抛物线经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N。∠ONE=30°,

(1)求抛物线的解析式及顶点D的坐标;
(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△ABP与△ADB相似?若存在,求出P点的坐标;若不存在,说明理由;
(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线经过A、C两点,与x轴的另一个交点是点D,连接BD.

(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线的图象过C点.

(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点A(0,4),B(2,0).

(1)求直线AB的函数解析式;
(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.
①求线段AC的长;(用含m的式子表示)
②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是【   】

A.    B.   C.  D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数、二次函数和反比例函数在同一直角坐标系中图象如图,A点为(-2,0)。则下列结论中,正确的是【   】
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则
y1>y2.其中说法正确的是【   】
A.①②B.②③C.①②④D.②③④

查看答案和解析>>

同步练习册答案