精英家教网 > 初中数学 > 题目详情
精英家教网如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AB=21,AD=9.求AC的长.
分析:把△ADC沿AC翻折得△AEC,作CF⊥AB于点F.根据轴对称的性质和线段垂直平分线的性质,分别求得CF和AF的长,根据勾股定理求得AC的长即可.
解答:精英家教网解:∵AC平分∠BAD,
∴把△ADC沿AC翻折得△AEC,
∴AE=AD=9,CE=CD=10=BC.
作CF⊥AB于点F.
∴EF=FB=
1
2
BE=
1
2
(AB-AE)=6.
在Rt△BFC(或Rt△EFC)中,由勾股定理得CF=8.
在Rt△AFC中,由勾股定理得AC=17.
∴AC的长为17.
点评:此题要巧妙构造辅助线,综合运用了轴对称的性质、线段垂直平分线的性质以及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案