精英家教网 > 初中数学 > 题目详情

已知y1与x成正比例,y2与x+2成正比例,且y=y1+y2,当x=2时,y=4;当x=-1时,y=7,求y与x之间的函数关系式.

.

解析试题分析:已知y1与x成正比例, y2与x+2成正比例,且y=y1+y2,所以,不妨设y1=kx,y2=m(x+2)把y1=kx,y2=m(x+2),代入y=y1+y2得:y=kx+m(x+2),再把x=2时y=4;x=-1时y=7代入y=kx+m(x+2)得方程组,解得即可.
试题解析:设y1=kx,y2=m(x+2)
∵y=y1+y2
∴y=kx+m(x+2)
当x=2时,y=4;当x=-1时,y=7,可得方程组:

解得:
∴y与x之间的函数关系式为:.
考点:1.用待定系数法求解析式.2.二元一次方程组的解法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,直线AB分别与两坐标轴交于点A(4,0).B(0,8),点C的坐标为(2,0).

(1)求直线AB的解析式;
(2)在线段AB上有一动点P.
①过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为6,求点P的坐标.
②连结CP,是否存在点P,使相似,若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABC三个顶点的坐标分别为A(2,3)、B(1,1)、C(5,1),先将△ABC作关于x轴的轴对称图形得到△A1B1C1,再将△A1B1C1向左平移5个单位得△A2B2C2

(1)分别画出两次变换的像△A1B1C1与△A2B2C2
(2)求出边AB所在直线的函数解析式,并判断点C2是否在该直线上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知y是x的一次函数,当x=2时,y=-1,且这个一次函数的图象与直线y=2x平行.试求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的图象与x轴交于两个不同的点A(﹣2,0)、B(4,0),与y轴交于点C(0,3),连接BC、AC,该二次函数图象的对称轴与x轴相交于点D.

(1)求这个二次函数的解析式、
(2)点D的坐标及直线BC的函数解析式;
(3)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△ABC相似,求出点Q的坐标;
(4)在(3)的条件下,若存在点Q,请任选一个Q点求出△BDQ外接圆圆心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=-x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.

求(1)点B'的坐标.(2)直线AM所对应的函数关系式

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.

(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知一次函数y1=kx+b与反比例函数的图象交于A(2,4)、B(﹣4,n)两点.

(1)分别求出y1和y2的解析式;
(2)写出y1=y2时,x的值;
(3)写出y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示.
请结合图象信息解答下列问题:

(1)快、慢两车的速度各是多少?
(2)出发多少小时,快、慢两车距各自出发地的路程相等?
(3)直接写出在慢车到达甲地前,快、慢两车相距的路程为150千米的次数.

查看答案和解析>>

同步练习册答案