【题目】如图1,矩形OABC的顶点A的坐标为(4,0),O为坐标原点,点B在第一象限,连接AC, tan∠ACO=2,D是BC的中点,
(1)求点D的坐标;
(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交 轴的正半轴于点E,连接DE交AB于点F.
①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时点P的坐标;
②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动的路径的长.
【答案】(1)D(2,2);(2)①P(0,0);②
【解析】
(1)根据三角函数求出OC的长度,再根据中点的性质求出CD的长度,即可求出D点的坐标;
(2)①证明在该种情况下DE为△ABC的中位线,由此可得F为AB的中点,结合三角形全等即可求得E点坐标,结合二次函数的性质可设二次函数表达式(此表达式为交点式的变形,利用了二次函数的平移的特点),将E点代入即可求得二次函数的表达式,根据表达式的特征可知P点坐标;
②可得G点的运动轨迹为,证明△DFF'≌△FGG',可得GG'=FF',求得P点运动到M点时的解析式即可求出F'的坐标,结合①可求得FF'即GG'的长度.
解:(1)∵四边形OABC为矩形,
∴BC=OA=4,∠AOC=90°,
∵在Rt△ACO中,tan∠ACO==2,
∴OC=2,
又∵D为CB中点,
∴CD=2,
∴D(2,2);
(2)①如下图所示,
若点B恰好落在AC上的时,根据折叠的性质,
∵D为BC的中点,
∴CD=BD,
∴,
∴,
∴,
∴,DF为△ABC的中位线,
∴AF=BF,
∵四边形ABCD为矩形
∴∠ABC=∠BAE=90°
在△BDF和△AEF中,
∵
∴△BDF≌△AEF,
∴AE=BD=2,
∴E(6,0),
设,将E(6,0)带入,8a+2=0
∴a=,则二次函数解析式为,此时P(0,0);
②如图,当动点P从点O运动到点M时,点F运动到点F',点G也随之运动到G'.连接GG'.当点P向点M运动时,抛物线开口变大,F点向上线性移动,所以G也是线性移动.
∵OM=OC=
∴,
当P点运动到M点时,设此时二次函数表达式为,将代入得,解得,所以抛物线解析式为,整理得.
当y=0时,,解得x=8(已舍去负值),
所以此时,
设此时直线 的解析式为y=kx+b,
将D(2,2),E(8,0)代入解得,
所以,
当x=4时,,所以,
由①得,
所以,
∵△DFG、△DF'G'为等边三角形,
∴∠GDF=∠G'DF'=60°,DG=DF,DG'=DF',
∴∠GDF﹣∠GDF'=∠G'DF'﹣∠GDF',
即∠G'DG=∠F'DF,
在△DFF'与△FGG'中,
,
∴△DFF'≌△FGG'(SAS),
∴GG'=FF',
即G运动路径的长为.
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)如图所示,下列结论:①b2﹣4ac>0;②a+b+c=2;③abc<0;④a﹣b+c<0,其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.
(1)求证:△ABE∽△DEF.
(2)若正方形的边长为4,求BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E为BC边上一点,连接DE,点F为线段DE上一点,且∠AFE=∠B.
(1)求证△ADF∽△DEC;
(2)若BE=2,AD=6,且DF=DE,求DF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D.
(1)求证:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,△ABC,△CDE都是等边三角形.
(1)写出AE与BD的大小关系.
(2)若把△CDE绕点C逆时针旋转到图②的位置时,上述(1)的结论仍成立吗?请说明理由.
(3)△ABC的边长为5,△CDE的边长为2,把△CDE绕点C逆时针旋转一周后回到图①位置,求出线段AE长的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图中所示的抛物线形拱桥,当拱顶离水面4m时,水面宽8m.水面上升3米,水面宽度减少多少?下面给出了解决这个问题的两种建系方法.
方法一如图1,以上升前的水面所在直线与抛物线左侧交点为原点,以上升前的水面所在直线为x轴,建立平面直角坐标系xOy;
方法二如图2,以抛物线顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系xOy,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1、2、3、4,这些卡片除数字外都相同,将卡片搅匀.
(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 ;
(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于5的概率(请用画树状图或列表等方法求解).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com