16£®Èçͼ£¬ÒÑÖª·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k¡Ù0£©µÄͼÏó¾­¹ýµã£¨$\frac{1}{2}$£¬8£©£¬Ö±Ïßy=-x+b¾­¹ý¸Ã·´±ÈÀýº¯ÊýͼÏóÉϵĵãQ£¨4£¬m£©£®
£¨1£©ÇóÉÏÊö·´±ÈÀýº¯ÊýºÍÖ±Ïߵĺ¯Êý±í´ïʽ£»
£¨2£©Éè¸ÃÖ±ÏßÓëxÖá¡¢yÖá·Ö±ðÏཻÓÚA¡¢BÁ½µã£¬Óë·´±ÈÀýº¯ÊýͼÏóµÄÁíÒ»¸ö½»µãΪµãP£¬Á¬½áOP¡¢OQ£¬Çó¡÷OPQµÄÃæ»ý£»
£¨3£©Çë´ÓͼÏóÉÏÖ±½Óд³ö£¬µ±xÈ¡ºÎֵʱ·´±ÈÀýº¯ÊýµÄֵСÓÚÒ»´Îº¯ÊýµÄÖµ£¿

·ÖÎö £¨1£©½«µã£¨$\frac{1}{2}$£¬8£©´úÈë·´±ÈÀý½âÎöʽÖÐÇó³ökµÄÖµ£¬È·¶¨³ö·´±ÈÀý½âÎöʽ£¬½«Q×ø±ê´úÈë·´±ÈÀý½âÎöʽÇó³ömµÄÖµ£¬È·¶¨³öQ×ø±ê£¬½«Q×ø±ê´úÈëÖ±Ïß½âÎöʽÖÐÇó³öbµÄÖµ£¬¼´¿ÉÈ·¶¨³öÖ±Ïß½âÎöʽ£»
£¨2£©¶ÔÓÚÖ±ÏßAB£¬Áîx=0Çó³ö¶ÔÓ¦yµÄÖµ£¬È·¶¨³öBµÄ×ø±ê£»Áîy=0Çó³ö¶ÔÓ¦xµÄÖµ£¬È·¶¨³öAµÄ×ø±ê£¬½ø¶øµÃ³öOAÓëOBµÄ³¤£¬Èý½ÇÐÎOPQµÄÃæ»ý=Ö±½ÇÈý½ÇÐÎAOBµÄÃæ»ý-Èý½ÇÐÎBOPµÄÃæ»ý-Èý½ÇÐÎAOQµÄÃæ»ý£¬Çó³ö¼´¿É£»
£¨3£©ÓÉPÓëQµÄºá×ø±ê£¬ÀûÓú¯ÊýͼÏóÕÒ³öÒ»´Îº¯ÊýͼÏóÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ·½Ê±xµÄ·¶Î§¼´¿É£®

½â´ð ½â£º£¨1£©½«x=$\frac{1}{2}$£¬y=8´úÈë·´±ÈÀý½âÎöʽµÃ£º8=$\frac{k}{\frac{1}{2}}$=4£¬¼´k=4£»
¡à·´±ÈÀý½âÎöʽΪy=$\frac{4}{x}$£¬½«Q×ø±ê´úÈë·´±ÈÀý½âÎöʽµÃ£ºm=1£¬
¡àQ£¨4£¬1£©£¬
½«Q×ø±ê´úÈëÖ±Ïß½âÎöʽµÃ£º1=-4+b£¬¼´b=5£¬
¹ÊÖ±Ïß½âÎöʽΪy=-x+5£»
£¨2£©½«Á½º¯Êý½âÎöʽÁªÁ¢µÃ£º$\left\{\begin{array}{l}{y=\frac{4}{x}}\\{y=-x+5}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$£¬
¡àP£¨1£¬4£©£¬
¶ÔÓÚÖ±Ïßy=-x+5£¬Áîx=0£¬ÇóµÃy=5£¬Áîy=0ÇóµÃx=5£¬
¡àA£¨5£¬0£©£¬B£¨0£¬5£©£¬ÓÖP£¨1£¬4£©£¬Q£¨4£¬1£©£¬
¡àOA=5£¬OB=5£¬
¡àS¡÷OPQ=S¡÷AOB-S¡÷BOP-S¡÷AOQ
=$\frac{1}{2}$OA•OB-$\frac{1}{2}$OB•xPºá×ø±ê-$\frac{1}{2}$OA•xQ×Ý×ø±ê
=$\frac{1}{2}$¡Á5¡Á5-$\frac{1}{2}$¡Á5¡Á1-$\frac{1}{2}$¡Á5¡Á1
=7.5£»
£¨3£©ÓÉͼÏó¿ÉµÃ£ºµ±1£¼x£¼4»òx£¼0ʱ£¬·´±ÈÀýº¯ÊýµÄֵСÓÚÒ»´Îº¯ÊýµÄÖµ£®

µãÆÀ ´ËÌ⿼²éÁËÒ»´Îº¯ÊýÓë·´±ÈÀýº¯ÊýµÄ½»µãÎÊÌ⣬Éæ¼°µÄ֪ʶÓУº´ý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬ÊýÐνáºÏµÄ˼Ï룬×ø±êÓëͼÐÎÐÔÖÊ£¬ÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨ÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ÊÇ·½³Ìbx-3y=6µÄÒ»¸ö½â£¬Ôòb=12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®µ±xȡʲôֵʱ£¬´úÊýʽx2-x-6Óë´úÊýʽ3x-2µÄÖµÏàµÈ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¼ÆËã
¢Ù${£¨-1£©^{2011}}-|{-7}|+\sqrt{9}¡Á{£¨\sqrt{7}-¦Ð£©^0}$
¢Ú$\frac{2a}{{{a^2}-9}}-\frac{1}{a-3}$
¢Û$\frac{2m}{3n}•{£¨{\frac{3n}{p}}£©^2}¡Â\frac{mn}{p^2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬¡ÏACB=90¡ã£¬¡ÏDAB=70¡ã£¬ACƽ·Ö¡ÏDAB£¬¡ÏDCA=35¡ã£®
¢ÙÇó¡ÏBµÄ¶ÈÊý£»   
¢ÚÇóÖ¤£ºAB¡ÎCD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¼ÆË㣨3$\sqrt{8}$-2$\sqrt{\frac{1}{2}}$+$\sqrt{32}$£©¡Â2$\sqrt{2}$µÄ½á¹ûÊÇ$\frac{9}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÓÃÊʵ±µÄ·½·¨½â·½³Ì
£¨1£©x2+2$\sqrt{3}$x-5=0
£¨2£©£¨x2-x-1£©£¨x2-x+3£©=5
£¨3£©9£¨2x+3£©2-4£¨2x-5£©2=0
£¨4£©x2+£¨m-$\frac{n}{m}$£©x-n=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Ò»ÌõÅ×ÎïÏßÓëxÖáÁ½¸ö½»µãµÄºá×ø±ê·Ö±ðÊÇ-1ºÍ3£¬ÇÒÓëyÖá½»µãµÄ×Ý×ø±êΪ3£¬Ôò¸ÃÅ×ÎïÏߵĽâÎöʽΪy=-x2+2x+3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Ð´³öÁ½¸öÓë$\sqrt{12}$ÊÇͬÀà¶þ´Î¸ùʽµÄ¸ùʽÊÇ-$\sqrt{3}$£¬4$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸